Autonomous Robots

, 27:373 | Cite as

Robust vision-based robot localization using combinations of local feature region detectors

  • Arnau RamisaEmail author
  • Adriana Tapus
  • David Aldavert
  • Ricardo Toledo
  • Ramon Lopez de Mantaras


This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.

In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.


Topological localization Vision based localization Panoramic vision Affine covariant region detectors 


  1. Andreasson, H., Treptow, A., & Duckett, T. (2005). Localization for mobile robots using panoramic vision, local features and particle filters. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’05), Barcelona, Spain. Google Scholar
  2. Angeli, A., Filliat, D., Doncieux, S., & Meyer, A. J. (2008). A fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, Special Issue on Visual SLAM. Google Scholar
  3. Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. (2008). Surf: Speeded up robust features. Computer Vision and Image Understanding, 110(3), 346–359. CrossRefGoogle Scholar
  4. Beeson, P., Jong, K. N., & Kuipers, B. (2005). Towards autonomous topological place detection using the extended Voronoi graph. In: IEEE international conference on robotics and automaton (ICRA), Barcelona, Spain, pp. 4373–4379. Google Scholar
  5. Booij, O., Terwijn, B., Zivkovic, Z., & Krose, B. (2007). Navigation using an appearance based topological map. In: IEEE international conference on robotics and automation (ICRA), pp. 3927–3932. Google Scholar
  6. Brown, M., & Lowe, D. (2003). Recognising panoramas. In ICCV ’03: Proceedings of the ninth IEEE international conference on computer vision (p. 1218). Washington: IEEE Computer Society. CrossRefGoogle Scholar
  7. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698. CrossRefGoogle Scholar
  8. Castellanos, A. J., & Tardos, D. J. (1999). Mobile robot localization and map building: Multisensor fusion approach. Dordrecht: Kluwer. Google Scholar
  9. Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17(2), 125–137. CrossRefGoogle Scholar
  10. Cummins, M., & Newman, P. (2008). Accelerated appearance-only SLAM. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on, pp. 1828–1833. Google Scholar
  11. Dissanayake, M., Newman, P., Clark, S. M., Durrant-Whyte, H., & Csorba, M. (2001). A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241. CrossRefGoogle Scholar
  12. Franz, M., Schlkopf, O., Mallot, B., & Blthoff, A. H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5, 111–125. CrossRefGoogle Scholar
  13. Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision, 2nd edn. Cambridge: Cambridge University Press, ISBN: 0521540518. zbMATHGoogle Scholar
  14. Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116. CrossRefGoogle Scholar
  15. Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. CrossRefGoogle Scholar
  16. Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British machine vision conference (BMVC’02), Cardiff, UK. Google Scholar
  17. Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86. CrossRefGoogle Scholar
  18. Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(10), 1615–1630. CrossRefGoogle Scholar
  19. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & van Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(2), 43–72. CrossRefGoogle Scholar
  20. Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. Conf. Computer Vision and Pattern Recognition, 2, 2161–2168. Google Scholar
  21. Owen, C., & Nehmzow, U. (1998). Landmark-based navigation for a mobile robot. In From animals to animals: Fifth international conference on simulation of adaptive behavior (SAB) (pp. 240–245). Cambridge: MIT. Google Scholar
  22. Ramisa, A., Tapus, A., Lopez de Mantaras, R., & Toledo, R. (2008). Mobile robot localization using panoramic vision and combinations of feature region detectors. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on, pp. 538–543. Google Scholar
  23. Se, S., Lowe, D., & Little, J. (2002). Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research, 21(8), 735–758. CrossRefGoogle Scholar
  24. Shum, H., & Szeliski, R. (1997). Panoramic image mosaics. Tech. Rep. MSR-TR-97-23, Microsoft Research. Google Scholar
  25. Silpa-Anan, C., & Hartley, R. A. (2004). Localization using an image-map. In: Proceedings of the 2004 Australasian conference on robotics and automation, Canberra, Australia. Google Scholar
  26. Szeliski, R., & Shum, H. Y. (1997). Creating full view panoramic image mosaics and environment maps. In SIGGRAPH ’97: Proceedings of the 24th annual conference on computer graphics and interactive techniques, vol. 31 (pp. 251–258). New York: ACM/Addison-Wesley. CrossRefGoogle Scholar
  27. Tapus, A., & Siegwart, R. (2006). A cognitive modeling of space using fingerprints of places for mobile robot navigation. In: Proceedings IEEE international conference on robotics and automation (ICRA), Orlando, USA, pp. 1188–1193. Google Scholar
  28. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1), 21–71. zbMATHCrossRefGoogle Scholar
  29. Thrun, S. (2000). Probabilistic algorithms in robotics. Artificial Intelligence Magazine, 21, 93–109. Google Scholar
  30. Uyttendaele, M., Eden, A., & Szeliski, R. (2001). Eliminating ghosting and exposure artifacts in image mosaics. In: IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, vol. 2. Google Scholar
  31. Valgren, C., & Lilienthal, A. (2008). Incremental spectral clustering and seasons: Appearance-based localization in outdoor environments. In: Robotics and automation, 2008. ICRA 2008. IEEE international conference on, pp. 1856–1861. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Arnau Ramisa
    • 1
    Email author
  • Adriana Tapus
    • 2
  • David Aldavert
    • 3
  • Ricardo Toledo
    • 3
  • Ramon Lopez de Mantaras
    • 1
  1. 1.Artificial Intelligence Research Institute (IIIA, CSIC)BarcelonaSpain
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.Computer Vision Center (CVC)BarcelonaSpain

Personalised recommendations