Autonomous Robots

, Volume 26, Issue 2–3, pp 187–202 | Cite as

Learning gas distribution models using sparse Gaussian process mixtures

  • Cyrill Stachniss
  • Christian Plagemann
  • Achim J. Lilienthal


In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics.


Gas distribution modeling Gas sensing Gaussian processes Mixture models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanco, J. L., Gonzalez, J., & Lilienthal, A. J. (2009). An efficient approach to probabilistic gas distribution mapping. In Proc. of the IEEE int. conf. on robotics & automation (ICRA). Submitted to ICRA 2009. Google Scholar
  2. Collins, M., & Duffy, N. (2002). Convolution kernels for natural language. In Proc. of the conf. on neural information processing systems (NIPS) (Vol. 1, pp. 625–632). Google Scholar
  3. Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and Gaussian processes for relational reinforcement learning. Machine Learning. Google Scholar
  4. DustBot (2008). DustBot—Networked and Cooperating Robots for Urban Hygiene.
  5. Frese, U. (2006). Treemap: An o(log n) algorithm for indoor simultaneous localization and mapping. Journal of Autonomous Robots, 21(2), 103–122. CrossRefGoogle Scholar
  6. Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46. CrossRefGoogle Scholar
  7. Hayes, A. T., Martinoli, A., & Goodman, R. M. (2002). Distributed odor source localization. IEEE Sensors Journal, Special Issue on Electronic Nose Technologies, 2(3), 260–273. Google Scholar
  8. Ishida, H., Nakamoto, T., & Moriizumi, T. (1998). Remote sensing of gas/odor source location and concentration distribution using mobile system. Sensors and Actuators B, 49, 52–57. CrossRefGoogle Scholar
  9. Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most likely heteroscedastic Gaussian process regression. In International Conference on Machine Learning (ICML), Corvallis, Oregon, USA, March 2007. Google Scholar
  10. Kolmogoroff, A. (1941). Interpolation und extrapolation von stationren zuflligen folgen. Bulletin of the Academy of Sciences of the Union of Soviet Socialist Republics, Mathematical Series, 5, 3–14. MathSciNetGoogle Scholar
  11. Le, Q. V., Smola, A. J., & Canu, S. (2005). Heteroscedastic Gaussian process regression. In Proceedings of the 22nd international conference on Machine learning (pp. 489–496). New York: ACM. CrossRefGoogle Scholar
  12. Lilienthal, A., & Duckett, T. (2004). Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems, 48(1), 3–16. CrossRefGoogle Scholar
  13. Lilienthal, A., Loutfi, A., & Duckett, T. (2006). Airborne chemical sensing with mobile robots. Sensors, 6, 1616–1678. CrossRefGoogle Scholar
  14. Lilienthal, A., Loutfi, A., Blanco, J. L., Galindo, C., & Gonzalez, J. (2007). A rao-blackwellisation approach to gdm-slam: Integrating slam and gas distribution mapping. In Proc. of the European conference on mobile robots (ECMR) (pp. 126–131). Google Scholar
  15. Marques, L., Martins, A., & de Almeida, A. T. (2005). Environmental monitoring with mobile robots. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (IROS) (pp. 3624–3629). Google Scholar
  16. Meeds, E., & Osindero, S. (2006). An alternative infinite mixture of Gaussian process experts. In Advances in Neural Information Processing Systems. Google Scholar
  17. Murlis, J., Elkington, J. S., & Carde, R. T. (1992). Odor plumes and how insects use them. Annual Review of Entomology, 37, 505–532. CrossRefGoogle Scholar
  18. O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the Royal Statistical Society B, 40(1), 1–42. zbMATHMathSciNetGoogle Scholar
  19. Paciorek, C. J., & Schervish, M. J. (2003). Nonstationary covariance functions for Gaussian process regression. In Proc. of the conf. on neural information processing systems (NIPS). Google Scholar
  20. Plagemann, C., Kersting, K., & Burgard, W. (2008). Nonstationary Gaussian process regression using point estimates of local smoothness. In Proc. of the European conference on machine learning (ECML), Antwerp, Belgium. Google Scholar
  21. Purnamadjaja, A. H., & Russell, R. A. (2005). Congregation behaviour in a robot swarm using pheromone communication. In Proc. of the Australian conf. on robotics and automation. Google Scholar
  22. Pyk, P., Bermúdez Badia, S., Bernardet, U., Knüsel, P., Carlsson, M., Gu, J., Chanie, E., Hansson, B. S., Pearce, T. C., & Verschure, P. F. (2006). An artificial moth: chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robots, 20, 197–213. CrossRefGoogle Scholar
  23. Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for non-linear regression. Ph.D. thesis, Graduate Department of Computer Science, University of Toronto. Google Scholar
  24. Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures of Gaussian process experts. In Advances in neural information processing systems 14. Google Scholar
  25. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press. Google Scholar
  26. Roberts, P. J. W., & Webster, D. R. (2002). Turbulent diffusion. In H. Shen, A. Cheng, K.-H. Wang, & M. H. Teng (Eds.), Environmental fluid mechanics—theories and application. Reston: ASCE. Google Scholar
  27. Schmidt, A. M., & O’Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure via spatial deformations. JRSS, Series B, 65, 745–758. MathSciNetGoogle Scholar
  28. Smola, A. J., & Bartlett, P. L. (2000). Sparse greedy Gaussian process regression. In NIPS (pp. 619–625). Google Scholar
  29. Snelson, E., & Ghahramani, Z. (2006a). Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems 18 (pp. 1259–1266). Google Scholar
  30. Snelson, E., & Ghahramani, Z. (2006b). Variable noise and dimensionality reduction for sparse Gaussian processes. In Uncertainty in artifical intelligence. Google Scholar
  31. Stachniss, C., Plagemann, C., Lilienthal, A., & Burgard, W. (2008). Gas distribution modeling using sparse Gaussian process mixture models. In Proc. of robotics: science and systems (RSS), Zurich, Switzerland.
  32. Tresp, V. (2000). Mixtures of Gaussian processes. In Proc. of the conf. on neural information processing systems (NIPS). Google Scholar
  33. Wandel, M., Lilienthal, A., Duckett, T., Weimar, U., & Zell, A. (2003). Gas distribution in unventilated indoor environments inspected by a mobile robot. In Proc. of the int. conf. on advanced robotics (ICAR) (pp. 507–512). Google Scholar
  34. Wiener, N. (1964). Extrapolation, interpolation, and smoothing of stationary time series. Cambridge: MIT Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cyrill Stachniss
    • 1
  • Christian Plagemann
    • 2
  • Achim J. Lilienthal
    • 3
  1. 1.Dept. of Computer ScienceUniversity of FreiburgFreiburgGermany
  2. 2.Computer Science Dept.Stanford UniversityStanfordUSA
  3. 3.AASS Research InstituteUniversity of ÖrebroÖrebroSweden

Personalised recommendations