Autonomous Robots

, 25:331 | Cite as

Self-organized adaptive legged locomotion in a compliant quadruped robot

  • Jonas BuchliEmail author
  • Auke Jan Ijspeert


In this contribution we present experiments of an adaptive locomotion controller on a compliant quadruped robot. The adaptive controller consists of adaptive frequency oscillators in different configurations and produces dynamic gaits such as bounding and jumping. We show two main results: (1) The adaptive controller is able to track the resonant frequency of the robot which is a function of different body parameters (2) controllers based on dynamical systems as we present are able to “recognize” mechanically intrinsic modes of locomotion, adapt to them and enforce them. More specifically the main results are supported by several experiments, showing first that the adaptive controller is constantly tracking body properties and readjusting to them. Second, that important gait parameters are dependent on the geometry and movement of the robot and the controller can account for that. Third, that local control is sufficient and the adaptive controller can adapt to the different mechanical modes. And finally, that key properties of the gaits are not only depending on properties of the body but also the actual mode of movement that the body is operating in. We show that even if we specify the gait pattern on the level of the CPG the chosen gait pattern does not necessarily correspond to the CPG’s pattern. Furthermore, we present the analytical treatment of adaptive frequency oscillators in closed feedback loops, and compare the results to the data from the robot experiments.


Compliant robot Adaptive controller Self-organized movement 


  1. Arnol’d, V. I. (1983). Remarks on the perturbation theory for problems of mathieu type. Russian Mathematical Surveys, 38(4), 215–233. zbMATHCrossRefGoogle Scholar
  2. Buchli, J., & Ijspeert, A. J. (2004a). Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In A. J. Ijspeert, M. Murata, & N. Wakamiya (Eds.), Lecture notes in computer science : Vol. 3141. Biologically inspired approaches to advanced information technology: first international workshop, BioADIT 2004 (pp. 333–349). Berlin: Springer. Google Scholar
  3. Buchli, J., & Ijspeert, A. J. (2004b). A simple, adaptive locomotion toy-system. In S. Schaal, A. J. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J. A. Meyer (Eds.), From animals to animats 8. Proceedings of the eighth international conference on the simulation of adaptive behavior (SAB’04) (pp. 153–162). Cambridge: MIT Press. Google Scholar
  4. Buchli, J., & Santini, C. C. (2005). Complexity engineering: Harnessing emergent phenomena as opportunities for engineering. In Reports of the Santa Fe Institute’s complex systems summer school 2005, Santa Fe Institute. Google Scholar
  5. Buchli, J., Righetti, L., & Ijspeert, A. J. (2005). A dynamical systems approach to learning: a frequency-adaptive hopper robot. In Lecture notes in artificial intelligence. Proceedings of the VIIIth European conference on artificial life ECAL 2005 (pp. 210–220). Berlin: Springer. Google Scholar
  6. Buchli, J., Iida, F., & Ijspeert, A. J. (2006a). Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3903–3909). New York: IEEE Press. Google Scholar
  7. Buchli, J., Righetti, L., & Ijspeert, A. J. (2006b). Adaptive frequency oscillators applied to dynamic walking II. Adapting to resonant body dynamics. In Proceedings of dynamic walking. Abstract. Google Scholar
  8. Buchli, J., Righetti, L., & Ijspeert, A. J. (2006c). Engineering entrainment and adaptation in limit cycle systems—from biological inspiration to applications in robotics. Biological Cybernetics, 95(6), 645–664. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Buchli, J., Righetti, L., & Ijspeert, A. (2008, in press). Frequency analysis with coupled nonlinear oscillators. Phyisca D. Google Scholar
  10. Cruse, H., Brunn, D. E., Bartling, C., Dean, J., Reifert, M., Kindermann, J., & Schmitz, T. (1994). Walking: A complex behavior controlled by simple networks. Adaptive Behavior, 3(4). Google Scholar
  11. Crespi, A., & Ijspeert, A. J. (2006). AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006) (pp. 19–27). Google Scholar
  12. Cham, J. G., Karpick, J. K., & Cutkosky, M. R. (2004). Stride period adaptation of a biomimetic running hexapod. International Journal of Robotics Research, 23(2), 141–153. CrossRefGoogle Scholar
  13. Collins, J. J., & Richmond, S. A. (1994). Hard-wired central pattern generators for quadrupedal locomotion. Biological Cybernetics, 71(5), 375–385. zbMATHCrossRefGoogle Scholar
  14. Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307(5712), 1082–1085. CrossRefGoogle Scholar
  15. Endo, G., Nakanishi, J., Morimoto, J., & Cheng, G. (2005). Experimental studies of a neural oscillator for biped locomotion with QRIO. In Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain (pp. 598–604). Google Scholar
  16. Fischer, M. S., & Blickhan, R. (2006). The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization—a review. Journal of Experimental Zoology, 305A(11), 935–952. CrossRefGoogle Scholar
  17. Futakata, Y., & Iwasaki, T. (2008, in press). Formal analysis of resonance entrainment by central pattern generator. Journal of Mathematical Biology. Available online. Google Scholar
  18. Full, R. J., & Koditscheck, D. E. (1999). Templates and anchors: neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332. Google Scholar
  19. Grillner, S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228(4696), 143–149. CrossRefGoogle Scholar
  20. Geyer, H., Seyfarth, A., & Blickhan, R. (2004). Spring-mass running: simple approximate solution and application to gait stability. Journal of Theoretiacl Biology, 232(3), 315–328. MathSciNetGoogle Scholar
  21. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356. zbMATHCrossRefMathSciNetGoogle Scholar
  22. Hogan, N. (1985). Impedance control—an approach to manipulation. i—theory. ii—implementation. iii—applications. Journal of Dynamic Systems, Measurement, and Control, 107, 1–24. zbMATHCrossRefGoogle Scholar
  23. Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math.-Phys., Sächs. Akad. d. Wissenschaften, Leipzig (pp. 1–22). Google Scholar
  24. Iida, F. (2005). Cheap design approach to adaptive behavior: Walking and sensing through body dynamics. In International symposium on adaptive motion of animals and machines. Google Scholar
  25. Iida, F., Gomez, G. J., & Pfeifer, R. (2005). Exploiting body dynamics for controlling a running quadruped robot. In Proceedings of the 12th int. conf. on advanced robotics (ICAR05) (pp. 229–235). Google Scholar
  26. Ijspeert, A. J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5), 331–348. CrossRefGoogle Scholar
  27. Ijspeert, A., Crespi, A., Ryczko, D., & Cabelguen, J.-M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817), 1416–1420. Additional material, like the supporting online material, movies and pictures can be accessed via the .html link. CrossRefGoogle Scholar
  28. Iwasaki, T., & Zheng, M. (2006). Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance. Biological Cybernetics, 94(4), 245–261. zbMATHCrossRefMathSciNetGoogle Scholar
  29. Kimura, H., & Fukuoka, Y. (2004). Biologically inspired adaptive dynamic walking in outdoor enviornment using a self-contained quadruped robot: Tekken2. In Proceedings IROS 2004. Google Scholar
  30. Kimura, H., Fukuoka, Y., & Cohen, A. V. (2004). Biologically inspired adaptive dynamic walking of a quadruped robot. In S. Schaal, A. J. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J. A. Meyer (Eds.), From animals to animats 8. Proceedings of the eighth international conference on the simulation of adaptive behavior (SAB’04) (pp. 201–210). Cambridge: MIT Press. Google Scholar
  31. Kelso, J. A. S., & Jeka, J. J. (1992). Symmetry breaking dynamics of human multilimb coordination. Journal of Experimental Psychology, 18(3), 645–668. Google Scholar
  32. Kelso, J. A. S., Southard, D. L., & Goodman, D. (1979). On the nature of human interlimb coordination. Science, 203(4384), 1029–1031. CrossRefGoogle Scholar
  33. Kuniyoshi, Y., & Suzuki, S. (2004). Dynamic emergence and adaptation of behavior through embodiment as coupled chaotic field. In Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and systems (pp. 2042–2049). New York: IEEE Press. Google Scholar
  34. McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9, 62–82. CrossRefGoogle Scholar
  35. Morimoto, J., Endo, G., Nakanishi, J., Hyon, S., Cheng, G., Bentivegna, D., & Atkeson, C. G. (2006) Modulation of simple sinusoidal patterns by a c oupled oscillator model for biped walking. In Proceedings of the 2006 IEEE international conference on robotics and automation (pp. 1579–1584), May 2006. Google Scholar
  36. Marsden, J. E., & Ostrowski, J. (1998). Symmetries in motion: Geometric foundations of motion control. Nonlinear Science Today. Google Scholar
  37. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Cambridge nonlinear science series : Vol. 12. Synchronization, a universal concept in nonlinear sciences. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  38. Pratt, G. A., Willisson, P., Bolton, C., & Hofman, A. (2004). Late motor processing in low-impedance robots: Impedance control of series elastic actuators. In Proceedings of the 2004 American control conference (pp. 3245–3251). Google Scholar
  39. Raibert, M. H. (1990). Trotting, pacing and bounding by a quadruped robot. Journal of Biomechanics, 23, 79–98. CrossRefGoogle Scholar
  40. Raibert, M., & Hodgins, J. K. (1993). Legged robots. In Biologicial neural networks in invertebrate neuroethology and robotics (pp. 319–354). San Diego: Academic Press. Google Scholar
  41. Reddy, D. V. R., Sen, A., & Johnston, G. L. (2000). Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D, 144(3–4), 335–357. zbMATHCrossRefMathSciNetGoogle Scholar
  42. Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: an application to biped locomotion control. In Proceedings of the 2006 IEEE international conference on robotics and automation. Google Scholar
  43. Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D, 216(2), 269–281. zbMATHCrossRefMathSciNetGoogle Scholar
  44. Shammas, E. A., Choset, H., & Rizzi, A. A. (2007a). Geometric motion planning analysis for two classes of underactuated mechanical systems. The International Journal of Robotics Research, 26(10), 1043–1073. CrossRefGoogle Scholar
  45. Shammas, E. A., Choset, H., & Rizzi, A. A. (2007b). Towards a unified approach to motion planning for dynamic underactuated mechanical systems with non-holonomic constraints. The International Journal of Robotics Research, 26(10), 1075–1124. CrossRefGoogle Scholar
  46. Schöner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513–1520. CrossRefGoogle Scholar
  47. Schöner, G., Jiang, W. Y., & Kelso, J. A. S. (1990). A synergetic theory of quadrupedal gaits and gait transitions. Journal of Theoretical Biology, 142, 359–391. CrossRefGoogle Scholar
  48. Tsuchiya, K., Aoi, S., & Tsujita, K. (2002). Locomotion control of a multi-legged locomotion robot using oscillators. In 2002 IEEE intl. conf. SMC (Vol. 4). Google Scholar
  49. Verdaasdonk, B. W., Koopman, H. F. J. M., & van der Helm, F. C. T. (2007). Resonance tuning in a neuro-musculo-skeletal model of the forearm. Biological Cybernetics, 96(2), 165–180. zbMATHCrossRefGoogle Scholar
  50. Valency, T., & Zacksenhouse, M. (2003). Accuracy/robustness dilemma in impedance control. Journal of Dynamic Systems, Measurement, and Control, 125, 310–319. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Computational Learning and Motor Control Lab.University of Southern CaliforniaLos AngelesUSA
  2. 2.Biologically Inspired Robotics Group, School of Computer and Communication SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations