Autonomous Robots

, Volume 25, Issue 3, pp 305–316 | Cite as

Fast and accurate map merging for multi-robot systems

  • Stefano Carpin


We present a new algorithm for merging occupancy grid maps produced by multiple robots exploring the same environment. The algorithm produces a set of possible transformations needed to merge two maps, i.e translations and rotations. Each transformation is weighted, thus allowing to distinguish uncertain situations, and enabling to track multiple cases when ambiguities arise. Transformations are produced extracting some spectral information from the maps. The approach is deterministic, non-iterative, and fast. The algorithm has been tested on public available datasets, as well as on maps produced by two robots concurrently exploring both indoor and outdoor environments. Throughout the experimental validation stage the technique we propose consistently merged maps exhibiting very different characteristics.


Multi-robot systems Mapping Hough transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birk, A., & Carpin, S. (2006). Merging occupancy grids from multiple robots. Proceedings of the IEEE, 94(7), 1384–1397. CrossRefGoogle Scholar
  2. Carpin, S., Birk, A., & Jucikas, V. (2005). On map merging. Robotics and Autonomous Systems, 53(1), 1–14. CrossRefGoogle Scholar
  3. Censi, A., Iocchi, L., & Grisetti, G. (2005). Scan matching in the Hough domain. In Proceedings of the IEEE international conference on robotics and automation (pp. 2739–2744). Google Scholar
  4. Craig, J. J. (2005). Introduction to robotics – mechanics and control. New York: Prentice Hall. Google Scholar
  5. Dedeoglu, G., & Sukhatme, G. S. (2000). Landmark-based matching algorithm for cooperative mapping by autonomous robots. In Distributed autonomous robotic systems 4 (pp. 251–260). Berlin: Springer. Google Scholar
  6. Duda, R., & Hart, P. (1972). Use of the hough transform to detect lines and curves in the pictures. Communications of the ACM, 15(1), 11–15. CrossRefGoogle Scholar
  7. Fox, D., Ko, J., Konolige, K., Limketai, B., Schulz, D., & Stewart, B. (2006). Distributed multirobot exploration and mapping. Proceedings of the IEEE, 94(7), 1325–1339. CrossRefGoogle Scholar
  8. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. A guide to the theory of NP-completeness. New York: Freeman. zbMATHGoogle Scholar
  9. Grisetti, S., Stachniss, C., & Burgard, W. (2005). Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In Proceedings of the IEEE international conference on robotics and automation (pp. 2432–2437). Google Scholar
  10. Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. International Journal of Robotics Research, 25(5–6), 431–447. Google Scholar
  11. Huang, W. H., & Beevers, K. R. (2005). Topological map merging. International Journal of Robotics Research, 24(8), 601–613. CrossRefGoogle Scholar
  12. Konolige, K., Fox, D., Limketkai, B., Ko, J., & Steward, B. (2003). Map merging for distributed robot navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 212–217). Google Scholar
  13. Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2, 129–153. CrossRefGoogle Scholar
  14. Open Computer Vision Library (2008).
  15. Openslam. (2007).
  16. Oppenheim, A. V., & Willsky, A. S. (1997). Signal and systems. New York: Prentice Hall. Google Scholar
  17. Parker, L. E. (2000). Current state of the art in distributed autonomous mobile robots. In L. E. Parker, G. Bekey & J. Barhen (Eds.), Distributed autonomous robotic systems 4 (pp. 3–12). Berlin: Springer. Google Scholar
  18. Radish. (2007). The robotics data set repository.
  19. Thrun, S. (2001). A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research, 20(5), 335–363. CrossRefGoogle Scholar
  20. Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. Cambridge: MIT. Google Scholar
  21. Williams, S. B., Dissanyake, G., & Durrant-Whyte, H. (2002). Towards multi-wehicle simultaneous localisation and mapping. In Proceedings of the IEEE international conference on robotics and automation (pp. 2743–2748). Google Scholar
  22. Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21, 977–1000. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of EngineeringUniversity of CaliforniaMercedUSA

Personalised recommendations