Advertisement

Autonomous Robots

, 25:317 | Cite as

Design and control of a planar bipedal robot ERNIE with parallel knee compliance

  • T. Yang
  • E. R. WesterveltEmail author
  • J. P. Schmiedeler
  • R. A. Bockbrader
Article

Abstract

This paper presents the development of the planar bipedal robot ERNIE as well as numerical and experimental studies of the influence of parallel knee joint compliance on the energetic efficiency of walking in ERNIE. ERNIE has 5 links—a torso, two femurs and two tibias—and is configured to walk on a treadmill so that it can walk indefinitely in a confined space. Springs can be attached across the knee joints in parallel with the knee actuators. The hybrid zero dynamics framework serves as the basis for control of ERNIE’s walking. In the investigation of the effects of compliance on the energetic efficiency of walking, four cases were studied: one without springs and three with springs of different stiffnesses and preloads. It was found that for low-speed walking, the addition of soft springs may be used to increase energetic efficiency, while stiffer springs decrease the energetic efficiency. For high-speed walking, the addition of either soft or stiff springs increases the energetic efficiency of walking, while stiffer springs improve the energetic efficiency more than do softer springs.

Keywords

Bipedal robot ERNIE Design Control Walking Parallel knee compliance Energetic efficiency of walking 

Supplementary material

VideoObject

VideoObject

References

  1. Ahmadi, M., & Buehler, M. (1999). ARL monopod II running robot: control and energetics, In Proc. of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI (vol. 3, pp. 1689–1694). Google Scholar
  2. Alexander, R. M. (1999). Three uses for springs in legged locomotion. International Journal of Robotics Research, 9(2), 53–61. Google Scholar
  3. Anderson, S. O., Wisse, M., Atkeson, C. G., Hodgins, J. K., Zeglin, G. J., & Moyer, B. (2005). Powered bipeds based on passive dynamic principles. In Humanoid Robots, 2005 5th IEEE-RAS International Conference (pp. 110–116). Google Scholar
  4. Bastien, G. J., Willems, P. A., Schepens, B., & Heglund, N. C. (2005). Effect of load and speed on the energetic cost of human walking. European Journal of Applied Physiology, 94(1–2), 76–83. CrossRefGoogle Scholar
  5. Browning, R. C., & Kram, R. (2005). Energetic cost and preferred speed of walking in obese vs. normal weight women. Obesity Research, 13(5), 891–899. CrossRefGoogle Scholar
  6. Capi, G., Nasu, Y., Barolli, L., & Mitobe, K. (2003). Real time gait generation for autonomous humanoid robots: a case study for walking. Robotics and Autonomous Systems, 42(2), 107–116. zbMATHCrossRefGoogle Scholar
  7. Channon, P. H., Hopkins, S. H., & Pham, D. T. (1992). Derivation of optimal walking motions for a bipedal walking robot. Robotica, 10, 165–172. CrossRefGoogle Scholar
  8. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E. R., Canudas, C., & Grizzle, J. W. (2003). RABBIT: a testbed for advanced control theory. IEEE Control Systems Magazine, 23(5), 57–79. CrossRefGoogle Scholar
  9. Chevallereau, C., & Aoustin, Y. (2001). Optimal reference trajectories for walking and running of a biped robot. Robotica, 19(5), 557–569. CrossRefGoogle Scholar
  10. Chow, C. K., & Jacobson, D. H. (1971). Studies of human locomotion via optimal programming. Mathematical Biosciences, 10, 239–306. CrossRefGoogle Scholar
  11. Coleman, M. J., & Ruina, A. (1998). An uncontrolled walking toy that cannot stand still. Physical Review Letters, 80(16), 3658–3661. CrossRefGoogle Scholar
  12. Collins, S. H., & Ruina, A. (2005). A bipedal walking robot with efficient and human-like gait. In Proc. of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain (pp. 1983–1988). Google Scholar
  13. Collins, S. H., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085. CrossRefGoogle Scholar
  14. Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20(7), 607–615. CrossRefGoogle Scholar
  15. Farrell, K. D., Chevallereau, C., & Westervelt, E. R. (2007). Energetic effects of adding springs at the passive ankles of a walking biped robot. In Proc. of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 3591–3596). Google Scholar
  16. Garcia, M., Chatterjee, A., & Ruina, A. (2000). Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dynamics and Stability of Systems, 15(2), 75–99. zbMATHCrossRefMathSciNetGoogle Scholar
  17. Gunther, M., & Ruder, H. (2003). Synthesis of two-dimensional human walking: a test of the lambda-model. Biological Cybernetics, 89(2), 89–106. CrossRefGoogle Scholar
  18. Hurst, J. W., Chestnutt, J. E., & Rizzi, A. A. (2007). Design and philosophy of the BiMASC, a highly dynamic biped. In Proc. of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 1863–1868). Google Scholar
  19. Iida, F., Minekawa, Y., Rummel, J., & Seyfarth, A. (2005). Toward a humanlike biped robot with compliant legs. Intelligent Autonomous Systems, 9, 820–827. Google Scholar
  20. Kato, I., & Tsuiki, H. (1972). The hydraulically powered biped walking machine with a high carrying capacity. In Proc. of the Fourth International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia (pp. 410–421). Google Scholar
  21. Kuo, A. D. (2007). Choosing your steps carefully. Robotics & Automation Magazine, IEEE, 14(2), 18–29. CrossRefGoogle Scholar
  22. Loffler, K., Gienger, M., Pfeiffer, F., & Ulbrich, H. (2004). Sensors and control concept of a biped robot. IEEE Transactions on Industrial Electronics, 51(5), 972–980. CrossRefGoogle Scholar
  23. McGeer, T. (1990). Passive dynamic walking. Internarional Journal of Robotics Research, 9(2), 62–82. CrossRefGoogle Scholar
  24. Pratt, J. E., Chee, M. C., Torres, A., Dilworth, P., & Pratt, G. A. (2001). Virtual model control: an intuitive approach for bipedal locomotion. International Journal of Robotics Research, 20(2), 129–143. CrossRefGoogle Scholar
  25. Pratt, J. E., & Pratt, G. A. (1998). Intuitive control of a planar bipedal walking robot. In Proc. of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium (pp. 2014–2021). Google Scholar
  26. Raibert, M. H. (1986). Legged robots that balance. Cambridge: MIT. Google Scholar
  27. Ralston, H. J. (1958). Energy-speed relation and optimal speed during level walking. European Journal of Applied Physiology, 17(4), x–x. CrossRefGoogle Scholar
  28. Rostami, M., & Bessonnet, G. (1998). Impactless sagittal gait of a biped robot during the single support phase. In Proc. of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium (pp. 1385–1391). Google Scholar
  29. Rostami, M., & Bessonnet, G. (2001). Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion. Robotica, 19, 241–253. Google Scholar
  30. Saidouni, T., & Bessonnett, G. (2003). Generating globally optimised sagittal gait cycles of a biped robot. Robotica, 21, 199–210. CrossRefGoogle Scholar
  31. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: system overview and integration. In Proc. of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (pp. 2478–2483). Google Scholar
  32. Tedrake, R. (2004). Applied optimal control for dynamically stable legged locomotion. PhD thesis, Massachusetts Institute of Technology. Google Scholar
  33. Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Meira Y Duran, B., & Beyl, P. (2006). Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. International Journal of Robotics Research, 25, 343–358. CrossRefGoogle Scholar
  34. Westervelt, E. R., Buche, G., & Grizzle, J. W. (2004). Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. International Journal of Robotics Research, 23(6), 559–582. CrossRefGoogle Scholar
  35. Westervelt, E. R., Grizzle, J. W., Chevallereau, C., Choi, J. H., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion. Taylor & Francis/CRC. Google Scholar
  36. Westervelt, E. R., Grizzle, J. W., & Koditschek, D. E. (2003). Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48(1), 42–56. CrossRefMathSciNetGoogle Scholar
  37. Wisse, M., Schwab, A. L., van der Linde, R. Q., & van der Helm, F. C. T. (2005). How to keep from falling forward: Elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics, 21(3), 393–401. CrossRefGoogle Scholar
  38. Wisse, M., Schwab, A. L., & van der Linde, R. Q. (2001). A 3D passive dynamic biped with yaw and roll compensation. Robotica, 19(3), 275–284. CrossRefGoogle Scholar
  39. Yang, T., Westervelt, E. R., & Serrani, A. (2007). A framework for the control of stable aperiodic walking in underactuated planar bipeds. In Proc. of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 4661–4666). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. Yang
    • 1
  • E. R. Westervelt
    • 2
    Email author
  • J. P. Schmiedeler
    • 3
  • R. A. Bockbrader
    • 4
  1. 1.Digital Technology Laboratory CorporationWest SacramentoUSA
  2. 2.General Electric Global Research CenterOne Research CircleNiskayunaUSA
  3. 3.Department of Mechanical EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.Palmer Associates, Machine Engineering & Systems DesignToledoUSA

Personalised recommendations