Autonomous Robots

, Volume 24, Issue 4, pp 419–434 | Cite as

Development of a compliance controller to reduce energy consumption for bipedal robots

  • Bram Vanderborght
  • Björn Verrelst
  • Ronald Van Ham
  • Michaël Van Damme
  • Pieter Beyl
  • Dirk Lefeber
Article

Abstract

In this paper a strategy is proposed to combine active trajectory tracking for bipedal robots with exploiting the natural dynamics by simultaneously controlling the torque and stiffness of a compliant actuator. The goal of this research is to preserve the versatility of actively controlled humanoids, while reducing their energy consumption. The biped Lucy, powered by pleated pneumatic artificial muscles, has been built and controlled and is able to walk up to a speed of 0.15 m/s. The pressures inside the muscles are controlled by a joint trajectory tracking controller to track the desired joint trajectories calculated by a trajectory generator. However, the actuators are set to a fixed stiffness value. In this paper a compliance controller is presented to reduce the energy consumption by controlling the stiffness. A mathematical formulation has been developed to find an optimal stiffness setting depending on the desired trajectory and physical properties of the system and the proposed strategy has been validated on a pendulum structure powered by artificial muscles. This strategy has not been implemented on the real robot because the walking speed of the robot is currently too slow to benefit already from compliance control.

Keywords

Biped Pneumatic artificial muscle Torque and compliance control Energy-efficient walking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basmajian, J., & De Luca, C. (1985). Muscles alive: their function revealed by electromyography (p. 1964). Google Scholar
  2. Bicchi, A., & Tonietti, G. (2004). Fast and soft arm tactics: dealing with the safety-performance trade-off in robot arms design and control. In IEEE robotics and automation magazine (Vol. 11, pp. 22–33). Google Scholar
  3. Bicchi, A., Tonietti, G., Bavaro, M., & Piccigallo, M. (2003). Variable stiffness actuators for fast and safe motion control. In International symposium robotics research (pp. 100–110). Google Scholar
  4. Caldwell, D., Medrano-Cerda, G., & Bowler, C. (1997). Investigation of bipedal robot locomotion using pneumatic muscle actuators. In IEEE international conference on robotics and automation (ICRA 1997) (pp. 799–804). Google Scholar
  5. Collins, S. H., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 18(307), 1082–1085. CrossRefGoogle Scholar
  6. Daerden, F., & Lefeber., D. (2001). The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2(3), 41–50. Google Scholar
  7. Davis, S., Tsagarakis, N., Canderle, J., & Caldwell, D. G. (2003). Enhanced modelling and performance in braided pneumatic muscle actuators. The International Journal of Robotic Research, 22(22), 213–227. CrossRefGoogle Scholar
  8. Ferris, D. P., & Farley, C. T. (1997). Interaction of leg stiffness and surface stiffness during human hopping. Journal of Applied Physiology, 82(1), 15–22. Google Scholar
  9. Gorce, P., & Guihard, M. (1998). On dynamic control of pneumatic bipeds. Journal of Robotic Systems, 15(7), 421–433. MATHCrossRefGoogle Scholar
  10. Guccione, S., Muscato, G., & Spampinato, G. (2003). A human inspired robotic leg: design, control and mechanical realization. In IEEE international conference on humanoid robots. Google Scholar
  11. Hildebrandt, A., Sawodny, O., Neumann, R., & Hartmann, A. (2005). Cascaded control concept of a robot with two degrees of freedom driven by four artificial pneumatic muscle actuators. In American control conference (Vol. 1, pp. 680–685). Google Scholar
  12. Honda Motor Co., Ltd. (2005). New asimo—running at 6 km/h. http://world.honda.com/HDTV/ASIMO/New-ASIMO-run-6kmh/.
  13. Hurst, J. W., Chestnutt, J., & Rizzi, A. A. (2004). An actuator with physically variable stiffness for highly dynamic legged locomotion. IEEE international conference on robotics and automation (ICRA 2004) (pp. 4662–4667), New Orleans, USA. Google Scholar
  14. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE international conference on robotics and automation (ICRA 2003) (Vol. 2, pp. 1620–1626). Google Scholar
  15. Kato, I., Mori, Y., & Masuda, T. (1972). Pneumatically powered artificial legs walking automatically under various circumstances. In Proceedings of the 4th international conference on external control of human extremities (pp. 458–470). Google Scholar
  16. Kuo, A. D., Donelan, J. M., & Ruina, A. (2005). Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise and Sport Sciences Reviews, 33(2), 88–97. CrossRefGoogle Scholar
  17. Michel, P., Chestnutt, J., Kuffner, J., & Kanade, T. (2005). Vision-guided humanoid footstep planning for dynamic environments. In IEEE-RAS international conference on humanoid robots (pp. 13–18). Google Scholar
  18. Schroder, J., Erol, D., Kawamura, K., & Dillman, R. (2003). Dynamic pneumatic actuator model for a model-based torque controller. In IEEE international symposium on computational intelligence in robotics and automation (CIRA 2003) (Vol. 1, pp. 342–347). Google Scholar
  19. Schulte, H. F. (1961). The characteristics of the McKibben artificial muscle. In The application of external power in prosthetics and orthotics (pp. 94–115). Lake Arrowhead: National Academy of Sciences–National Research Council. Google Scholar
  20. Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Cambridge: Prentice-Hall. MATHGoogle Scholar
  21. Sulzer, J., Peshkin, M., & Patton, J. (2005). MARIONET: an exotendon-driven, rotary series elastic actuator for exerting joint torque. In International conference on robotics for rehabilitation (ICORR 2005) (pp. 103–108). Google Scholar
  22. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768. CrossRefGoogle Scholar
  23. Vanderborght, B., Verrelst, B., Van Ham, R., & Lefeber, D. (2006a). Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica, 24(04), 401–410. CrossRefGoogle Scholar
  24. Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Meira, Y., Duran, B., & Beyl, P. (2006b). Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. The International Journal of Robotics Research, 25(4), 343–358. CrossRefGoogle Scholar
  25. Verrelst, B., Van Ham, R., Vanderborght, B., Daerden, F., & Lefeber, D. (2005). The pneumatic biped LUCY actuated with pleated pneumatic artificial muscles. Autonomous Robots, 18, 201–213. CrossRefGoogle Scholar
  26. Verrelst, B., Stasse, O., Yokoi, K., & Vanderborght, B. (2006a). Dynamically stepping over obstacles by the humanoid robot HRP-2. In IEEE-RAS international conference on humanoid robots (pp. 117–123). Google Scholar
  27. Verrelst, B., Van Ham, R., Vanderborght, B., Lefeber, D., Daerden, F., & Van Damme, M. (2006b). Second generation pleated pneumatic artificial muscle and its robotic applications. Advanced Robotics, 20(7), 783–805. CrossRefGoogle Scholar
  28. Walker, R. (1996). Using air muscles for compliant bipedal and many-legged robotics. In IEE colloquium on information technology for climbing and walking robots (pp. 3/1–3/3). Google Scholar
  29. Yamaguchi, J., Nishino, D., & Takanishi, A. (1998). Realization of dynamic biped walking varying joint stiffness using antagonistic driven joints. In IEEE international conference on robotics and automation (ICRA 1998) (Vol. 3, pp. 2022–2029). Google Scholar
  30. Yoshida, E., Esteves, C., Sakaguchi, T., Laumond, J.-P., & Yokoi, K. (2006). Smooth collision avoidance: practical issues in dynamic humanoid motion. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2006) (pp. 827–832). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bram Vanderborght
    • 1
    • 2
  • Björn Verrelst
    • 1
  • Ronald Van Ham
    • 1
  • Michaël Van Damme
    • 1
  • Pieter Beyl
    • 1
  • Dirk Lefeber
    • 1
  1. 1.Department of Mechanical EngineeringVrije Universiteit BrusselBrusselBelgium
  2. 2.Robotics, Brain and Cognitive Sciences DepartmentItalian Institute of TechnologyGenovaItaly

Personalised recommendations