Autonomous Robots

, Volume 25, Issue 1–2, pp 171–188

Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm

Article

Abstract

This article presents a bio-inspired communication strategy for large-scale robotic swarms. The strategy is based purely on robot-to-robot interactions without any central unit of communication. Thus, the emerging swarm regulates itself in a purely self-organized way. The strategy is biologically inspired by the trophallactic behavior (mouth-to-mouth feedings) performed by social insects. We show how this strategy can be used in a collective foraging scenario and how the efficiency of this strategy can be shaped by evolutionary computation. Although the algorithm works stable enough that it can be easily parameterized by hand, we found that artificial evolution could further increase the efficiency of the swarm’s behavior. We investigated the suggested communication strategy by simulation of robotic swarms in several arena scenarios and studied the properties of some of the emergent collective decisions made by the robots. We found that our control algorithm led to a nonlinear, but graduated path selection of the emerging trail of loaded robots. They favored the shortest path, but not all robots converged to this trail, except in arena setups with extreme differences in the length of the two possible paths. Finally, we demonstrate how the flexibility of collective decisions that arise through this new strategy can be used in changing environments. We furthermore show the importance of a negative feedback in an environment with changing foraging targets. Such feedback loops allow outdated information to decay over time. We found that task efficiency is constrained by a lower and an upper boundary concerning the strength of this negative feedback.

Keywords

Swarm robotics Communication Navigation Foraging Collective decision Self-organization Swarm intelligence Honey bee Trophallaxis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckers, R., Deneubourg, J.-L., Gross, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37, 258–267. CrossRefGoogle Scholar
  2. Beckers, R., Deneubourg, J. L., & Gross, S. (1992). Trails and U-turns in the selection of a path by the ant Lasius niger. Journal of Theoretical Biology, 159, 397–415. CrossRefGoogle Scholar
  3. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Santa Fe Institute, Studies in the Sciences of Complexity. Google Scholar
  4. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2, 14–23. MathSciNetGoogle Scholar
  5. Bruemmer, D. J., Dudenhoeffer, D. D., Mc.Kay, M. D., & Anderson, M. O. (2002). A robotic swarm for spill finding and perimeter formation. In Spectrum 2002, Reno, NV, USA, August 2002. Google Scholar
  6. Camazine, S. (1993). The regulation of pollen foraging by honey bees: how foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology, 32, 265–273. CrossRefGoogle Scholar
  7. Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G. E., Leonhard, B., & Kropiunigg, H. (1998). Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie, 29, 113–126. CrossRefGoogle Scholar
  8. Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press. Google Scholar
  9. Caprari, G., Arras, K. O., & Siegwart, R. (2001). Robot navigation in centimeter range labyrinths. In Proceedings of the 5th international Heinz Nixdorf symposium. Autonomous minirobots for research and edutainment (pp. 83–92), Germany. Google Scholar
  10. Crailsheim, K. (1992). The flow of jelly within a honeybee colony. Journal of Comparative Physiology B, 162, 681–689. CrossRefGoogle Scholar
  11. Crailsheim, K. (1998). Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie, 29, 97–112. CrossRefGoogle Scholar
  12. DeGrandi-Hoffman, G., & Hagler, J. (2000). The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker. Insectes Sociaux, 47, 302–306. CrossRefGoogle Scholar
  13. Ferber, J. (2001). In Multiagentensysteme (p. 549). Munich: Addison-Wesley. Google Scholar
  14. Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie:essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–83. CrossRefGoogle Scholar
  15. Grassé, P.-P. (1967). Nouvelles experiences sur le termite de Müller (Macrotermes mülleri) et considerations sur la théorie de la stigmergie. Insectes Sociaux, 14, 73–102. CrossRefGoogle Scholar
  16. Hamann, H., & Wörn, H. (2007a). An analytical and spatial model of foraging in a swarm of robots. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.) , Lecture notes in computer science : Vol. 4433. Swarm robotics; second SAB 2006 international workshop. (pp. 43–55). Berlin: Springer. Google Scholar
  17. Hamann, H., & Wörn, H. (2007b). A space- and time-continuous model of self-organizing robot swarms for design support. In Proceedings of the first IEEE international conference on self-adaptive and self-organizing systems (SASO’07), Boston, USA, July 2007. Google Scholar
  18. Hayes, A. T., Martinoli, A., & Goodman, R. M. (2001). Swarm robotic odor localization: off-line optimization and validation with real robots. Robotica, 21, 427–441. CrossRefGoogle Scholar
  19. Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann. Google Scholar
  20. Karsai, I. (1999). Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artificial Life, 5, 117–136. CrossRefGoogle Scholar
  21. Kornienko, S., Kornienko, O., & Levi, P. (2005a). Minimalistic approach towards communication and perception in microrobotic swarms. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 4005–4011), Edmonton, AB, Canada. Google Scholar
  22. Kornienko, S., Kornienko, O., & Levi, P. (2005b). Collective AI: context awareness via communication. In Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI 2005) (pp. 1464–1470), Edinburgh, Scotland. Google Scholar
  23. Lerman, K., & Galstyan, A. (2001). A general methodology for mathematical analysis of multi-agent systems (Technical Report ISI-TR-529). Google Scholar
  24. Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model for collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393. CrossRefGoogle Scholar
  25. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Journal of Robotics Research, 23, 415–436. CrossRefGoogle Scholar
  26. McLurkin, J. D. (2004). Stupid robot tricks: a behavior-based distributed algorithm library for programming swarms of robots. Master thesis at the MIT. Google Scholar
  27. McLurkin, J., & Smith, J. (2004). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In Proceedings of distributed autonomous robotic systems conference, Toulouse, France, 23–25 June 2004. Google Scholar
  28. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11, 319–324. CrossRefMATHGoogle Scholar
  29. Payton, D., Estkowski, R., & Howard, M. (2003). Compound behaviors in pheromone robotics. Robotics and Autonomous Systems, 44, 229–240. CrossRefGoogle Scholar
  30. Payton, D., Estkowski, R., & Howard, M. (2005). Pheromone robotics and the logic of virtual pheromones. In Lecture notes in computer science (Vol. 3342, pp. 45–57). Berlin: Springer. Google Scholar
  31. Rechenberg, I. (1970). Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Holzboog (1973). ISBN 3-7728-0373-3 (Dissertation von 1970). Google Scholar
  32. Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology, 28, 277–290. CrossRefGoogle Scholar
  33. Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., & Wörn, H. (2005). The I-SWARM project: intelligent small world autonomous robots for micro-manipulation. In Lecture notes in computer science (Vol. 3342, pp. 70–83). Berlin: Springer. Google Scholar
  34. Schmickl, T., & Crailsheim, K. (2004). Costs of environmental fluctuations and benefits of dynamic decentralized foraging decisions in honeybees. Adaptive Behavior, 12, 263–277. CrossRefGoogle Scholar
  35. Schmickl, T., & Crailsheim, K. (2006). Trophallaxis among swarm-robots: a biological inspired strategy for swarm robotics. In Proceedings of BioRob 2006, biomedical robotics and biomechatronics, Pisa, Italy. ISBN 1-4244-0040-6. Google Scholar
  36. Schmickl, T., & Crailsheim, K. (2007). A navigation algorithm for swarm robotics inspired by slime mold aggregation. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 1–13). Berlin: Springer. Google Scholar
  37. Schmickl, T., Thenius, R., & Crailsheim, K. (2005). Simulating swarm intelligence in honey bees: foraging in differently fluctuating environments. In Proceedings of the genetic and evolutionary computation conference (GECCO) (pp. 274–274), Washington, DC, USA. Google Scholar
  38. Schmickl, T., Möslinger, Ch., & Crailsheim, K. (2007). Collective perception in a robot swarm. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 144–157). Berlin: Springer. Google Scholar
  39. Song, P., & Kumar, V. (2002). A potential field based approach to multi-robot manipulation. In Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC, USA, May 2002. Google Scholar
  40. Soysal, O., & Sahin, E. (2007). A macroscopic model for self-organized aggregation in swarm robotic systems. In E. Sahin, W. M. Spears, & A. F. T. Winfield (Eds.), Swarm robotics; second SAB 2006 international workshop. Lecture notes in computer science (Vol. 4433, pp. 43–55). Berlin: Springer. Google Scholar
  41. Stoy, K. (2006). How do construct dense objects with self-reconfigurable robots. Springer Tracts in Advanced Robotics, 22, 27–37. CrossRefGoogle Scholar
  42. Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behavior of interacting robots with virtual pheromone. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 3074–3079), Sendai, Japan. Google Scholar
  43. Sumpter, D. J. T., & Beekman, M. (2003). From nonlinearity to optimality: pheromone trail foraging by ants. Animal Behaviour, 66, 273–280. CrossRefGoogle Scholar
  44. Sumpter, D. J. T., & Pratt, S. C. (2003). A modelling framework for understanding social insect foraging. Behavioural Ecology and Sociobiology, 53, 131–144. Google Scholar
  45. Trianni, V., Groß, R., Labella, T. H., Sahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors in a swarm of robots. In Lecture notes of artificial intelligence (Vol. 2801, pp. 865–874). Berlin: Springer. Google Scholar
  46. Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., & Dario, P. (2006). Micromanipulation, communication and swarm intelligence issues in a microrobotic platform. Robotics and Automation Systems, 54, 789–804. CrossRefGoogle Scholar
  47. Webb, B., & Reeve, R. (2003). Referent or redundant: integration of phototaxis and optomotor behavior in crickets and robots. Adaptive Behaviour, 11(3), 137–158. CrossRefGoogle Scholar
  48. Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL. http://ccl.northwestern.edu/netlogo/.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department for ZoologyKarl-Franzens-University GrazGrazAustria

Personalised recommendations