Autonomous Robots

, Volume 25, Issue 1–2, pp 103–122 | Cite as

A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance

  • J. SerresEmail author
  • D. Dray
  • F. Ruffier
  • N. Franceschini


In our project on the autonomous guidance of Micro-Air Vehicles (MAVs) in confined indoor and outdoor environments, we have developed a vision based autopilot, with which a miniature hovercraft travels along a corridor by automatically controlling both its speed and its clearance from the walls. A hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control systems can be developed conveniently. Our hovercraft is fully actuated by two rear and two lateral thrusters. It travels at a constant altitude (∼2 mm) and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs). The visuo-motor control system, which is called LORA III (Lateral Optic flow Regulation Autopilot, Mark III), is a dual OF regulator consisting of two intertwined feedback loops, each of which has its own OF set-point and controls the vehicle’s translation in one degree of freedom (surge or sway). Our computer-simulated experiments show that the hovercraft can navigate along a straight or tapered corridor at a relatively high speed (up to 1 m/s). It also reacts to any major step perturbations in the lateral OF (provided by a moving wall) and to any disturbances caused by a tapered corridor. The minimalistic visual system (comprised of only 4 pixels) suffices for the hovercraft to be able to control both its clearance from the walls and its forward speed jointly, without ever measuring speed and distance. The non-emissive visual sensors and the simple control system developed here are suitable for use on MAVs with a permissible avionic payload of only a few grams. This study also accounts quantitatively for previous ethological findings on honeybees flying freely in a straight or tapered corridor.


OF (optic flow) Motion detection Autopilot MAV (micro-air vehicle) Hovercraft Urban canyon navigation Insect flight Biorobotics Biomimetics Bionics 



Lateral Optic Flow Regulation Autopilot, Mark I, as described in Serres et al. (2006a). It includes a single optic flow regulator


Lateral Optic Flow Regulation Autopilot, Mark II, as described in Serres et al. (2006b). It includes two optic flow regulators with a common set-point


Lateral Optic Flow Regulation Autopilot, Mark III, as described in this paper. It includes two optic flow regulators, each with its own OF set-point


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argyros, A. A., Tsakiris, D. P., & Groyer, C. (2004). Biomimetic centering behavior for mobile robots with panoramic sensors. In K. Daniilides & N. Papanikolopoulos (Eds.). IEEE robotics and automation magazine: Vol. 11. Special issue on “panoramic robotics (pp. 21–30). Google Scholar
  2. Aubépart, F., & Franceschini, N. (2007). Bio-inspired optic flow sensors based on FPGA: Application to micro-air-vehicles. Journal of Microprocessors and Microsystems, 31(6), 408–419. CrossRefGoogle Scholar
  3. Baird, E., Srinivasan, M. V., Zhang, S., & Cowling, A. (2005). Visual control of flight speed in honeybees. Journal of Experimental Biology, 208, 3895–3905. CrossRefGoogle Scholar
  4. Bermudez i Badia, S., Pyk, P., & Verschure, P. F. M. J. (2007). A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance. The International Journal of Robotics Research, 26(7), 759–772. CrossRefGoogle Scholar
  5. Blanes, C. (1986). Appareil visuel élémentaire pour la navigation à vue d’un robot mobile autonome. M.S. thesis in neurosciences, Neurosciences, Univ. Aix-Marseille II. Google Scholar
  6. Carelli, R., Soria, C., Nasisi, O., & Freire, E. (2002). Stable AGV corridor navigation with fused vision-based control signals. In Proceedings of the 28th conference of industrial electronics society (Vol. 3, pp. 2433–2438). Google Scholar
  7. Collett, T. S. (1980). Some operating rules for the optomotor system of a hoverfly during voluntary flight. Journal of Comparative Physiology A, 138, 271–282. CrossRefGoogle Scholar
  8. Coombs, D., & Roberts, K. (1992). Bee-bot: using peripheral optical flow to avoid obstacles. In SPIE: Vol. 1825. Intelligent robots and computer vision XI (pp. 714–721). Google Scholar
  9. Dev, A., Kröse, B., & Groen, F. (1997). Navigation of a mobile robot on a temporal development of the optic flow. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (pp. 558–563). Google Scholar
  10. Duchon, A. P., & Warren, W. H. (1994). Robot navigation from a Gibsonian viewpoint. In Proceedings of the international conference on systems, man and cybernetics (pp. 2272–2277), San Antonio, Texas. Google Scholar
  11. Franceschini, N. (1985). Early processing of colour and motion in a mosaic visual system. Neuroscience Research, 2, 17–49. Google Scholar
  12. Franceschini, N., Blanes, C., & Oufar, L. (1986). Passive, non-contact optical velocity sensor (Technical report) (in French), France: ANVAR/DVAR N°51549, Paris. Google Scholar
  13. Franceschini, N., Riehle, A., & Le Nestour, A. (1989). Directionally selective motion detection by insects neurons. In D. G. Stavenga & R. C. Hardie (Eds.), Facets of Vision (pp. 360–390). Berlin: Springer. Google Scholar
  14. Franceschini, N., Pichon, J. M., & Blanes, C. (1992). From insect vision to robot vision. Philosophical Transaction of the Royal Society of London B: Biological Sciences, 337, 283–294. CrossRefGoogle Scholar
  15. Franceschini, N., Ruffier, F., & Serres, J. (2007). A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology, 17, 329–335. CrossRefGoogle Scholar
  16. Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., & Beard, R. (2006). Maximizing miniature aerial vehicles—obstacle and terrain avoidance for MAVs. IEEE Robotics and Automation Magazine, 13, 34–43. CrossRefGoogle Scholar
  17. Hrabar, S. E., Corke, P. I., Sukhatme, G. S., Usher, K., & Roberts, J. M. (2005). Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3309–3316), Edmonton, Canada. Google Scholar
  18. Humbert, J. S., Murray, R. M., & Dickinson, M. H. (2005). Sensorimotor convergence in visual navigation and flight control systems. In Proceedings on the 16th IFAC world congress, Prague, Czech Republic. Google Scholar
  19. Humbert, J. S., Hypsol, H., & Chinn, M. (2007). Experimental validation of wide-field integration methods for autonomous navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego, USA. Google Scholar
  20. Iida, F. (2001). Goal-directed navigation of an autonomous flying robot using biologically inspired cheap vision. In Proceedings of the 32nd international symposium on robotics, ISR’2001 (pp. 1404–1409). Google Scholar
  21. Jin, Z., Waydo, S., Wildanger, E. B., Lammers, M., Scholze, H., Foley, P., Held, D., & Murray, R. M. (2004). MVWT-II: the second generation Caltech multi-vehicle wireless testbed. In Proceedings of the American control conference, ACC’2004 (Vol. 6, pp. 5321–5326). Google Scholar
  22. Kirchner, W. H., & Srinivasan, M. V. (1989). Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften, 76, 281–282. CrossRefGoogle Scholar
  23. Martin, N., & Franceschini, N. (1994). Obstacle avoidance and speed control in a mobile vehicle equipped with a compound eye. In N. Aoki & I. Masaki (Eds.), Intelligent vehicles (pp. 381–386). Cambridge: MIT Press. Google Scholar
  24. Mura, F., & Franceschini, N. (1994). Visual control of altitude and speed in a flying agent. In D. Cliff et al. (Eds.), From animals to animats III (pp. 91–99). Cambridge: MIT Press. Google Scholar
  25. Mura, F., & Franceschini, N. (1996). Obstacle avoidance in a terrestrial mobile robot provided with a scanning retina. In N. Aoki & I. Masaki (Eds.), Inteligent vehicles II (pp. 47–52). Cambridge: MIT Press. CrossRefGoogle Scholar
  26. Muratet, L., Doncieux, S., Briere, Y., & Meyer, J.-A. (2005). A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and Autonomous Systems, 50(4), 195–209. CrossRefGoogle Scholar
  27. Neumann, T. R., & Bülthoff, H. H. (2001). Insect inspired visual control of translatory flight. In J. Kelemen & P. Sosik (Eds.), LNCS/LNAI : Vol. 2159. Proceedings of the 6th European conference on artificial life ECAL 2001 (pp. 627–636). Berlin: Springer. Google Scholar
  28. Netter, T., & Franceschini, N. (2002). A robotic aircraft that follows terrain using a neuromorphic eye. In Proceedings of the IEEE intelligent robots and systems (IROS) (pp. 129–134), Lausanne, Switzerland. Google Scholar
  29. Pudas, M., Viollet, S., Ruffier, F., Kruusing, A., Amic, S., Leppävuori, S., & Franceschini, N. (2007). A miniature bio-inspired optic flow sensor based on low temperature co-fired ceramics (LTCC) technology. Sensors and Actuators A, 133, 88–95. CrossRefGoogle Scholar
  30. Riley, J. R., & Osborne, J. L. (2001). Flight trajectories of foraging insects: observations using harmonic radar. In I. P. Woiwod, D. R. Reynolds, & C. D. Thomas (Eds.), Insect movement: mechanisms and consequences (pp. 129–157), CAB International. Google Scholar
  31. Ruffier, F., & Franceschini, N. (2003). OCTAVE, a bioinspired visuo-motor control system for the guidance of micro-air vehicle. In Rodriguez-Vazquez, Abbott & Carmona (Eds.), Proceedings of SPIE conf. on bioengineered and bioinspired systems (Vol. 5119, pp. 1–12), Maspalomas, Spain, May 19–21, Bellingham, USA. Google Scholar
  32. Ruffier, F., Viollet, S., Amic, S., & Franceschini, N. (2003). Bio-inspired optical flow circuits for the visual guidance of micro-air vehicles. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS) (Vol. III, pp. 846–849), Bangkok, Thailand. Google Scholar
  33. Ruffier, F., & Franceschini, N. (2005). Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems, 50(4), 177–194. CrossRefGoogle Scholar
  34. Ruffier, F., Serres, J., Masson, G. P., & Franceschini, N. (2007). A bee in the corridor: regulating the optic flow on one side. In Proceedings of the 7th meeting of the German neuroscience society—31st Göttingen neurobiology conference, Göttingen, Germany, Abstract T14-7B. Google Scholar
  35. Santos-Victor, J., Sandini, G., Curotto, F., & Garibaldi, S. (1995). Divergent stereo in autonomous navigation: from bees to robots. International Journal of Computers Vision, 14, 159–177. CrossRefGoogle Scholar
  36. Schilstra, C., & van Hateren, J. H. (1999). Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. Journal of Experimental Biology, 202, 1481–1490. Google Scholar
  37. Seguchi, H., & Ohtsuka, T. (2003). Nonlinear receding horizon control of an underactuated hovercraft. International Journal of Robust and Nonlinear Control, 13, 381–398. CrossRefMathSciNetzbMATHGoogle Scholar
  38. Serres, J., Ruffier, F., & Franceschini, N. (2005). Biomimetic visual navigation in a corridor: to centre or not to centre? In Proceedings of international mediterranean modeling multiconference, (pp. 91–97), Marseilles, France. Google Scholar
  39. Serres, J., Ruffier, F., Viollet, S., & Franceschini, N. (2006a). Toward optic flow regulation for wall-following and centring behaviours. International Journal of Advanced Robotic Systems, 3, 147–154. Google Scholar
  40. Serres, J., Ruffier, F., & Franceschini, N. (2006b). Two optic flow regulators for speed control and obstacle avoidance. In Proceedings of the first IEEE international conference on biomedical robotics and biomechatronics (BIOROB) (pp. 750–757), Pisa, Italy. Google Scholar
  41. Serres, J., Ruffier, F., Masson, G. P., & Franceschini, N. (2007). A bee in the corridor: centring or wall-following? In Proceedings of the 7th meeting of the German neuroscience society—31st Göttingen neurobiology conference, Göttingen, Germany, Abstract T14-8B. Google Scholar
  42. Smallwood, D. A., & Whitcomb, L. L. (2004). Model-based dynamic positioning of underwater robotic vehicles: theory and experiment. IEEE Journal of Oceanic Engineering, 29, 169–186. CrossRefGoogle Scholar
  43. Srinivasan, M. V., Zhang, S. W., Lehrer, M., & Collett, T. S. (1996). Honeybee navigation. en route to the goal: visual flight control and odometry. Journal of Experimental Biology, 199, 237–244. Google Scholar
  44. Srinivasan, M. V., Chahl, J. S., Weber, K., Venkatesh, S., Nagle, M. G., & Zhang, S. W. (1999). Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26, 203–216. CrossRefGoogle Scholar
  45. Tammero, L. F., & Dickinson, M. H. (2002). The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 205, 327–343. Google Scholar
  46. Viollet, S., & Franceschini, N. (1999). Visual servo system based on a biologically-inspired scanning sensor. In Proceedings of SPIE conf. on sensor fusion and decentralized control on robotics II (Vol. 3839, pp. 144–155), Boston, USA. Google Scholar
  47. Viollet, S., & Franceschini, N. (2005). A high speed gaze control system based on a vestibulo-ocular Reflex. Robotics and Autonomous Systems, 50(4), 147–161. CrossRefGoogle Scholar
  48. von Frisch, K. (1948). Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften, 35, 38–43. CrossRefGoogle Scholar
  49. Wagner, H. (1982). Flow-field variables trigger landing in flies. Nature, 297, 147–148. CrossRefGoogle Scholar
  50. Wagner, H. (1986). Flight performance and visual control of flight in the free-flying house fly (Musca domestica L.). I: Organization of the flight motor. Philosophical Transactions of the Royal Society of London B, 312, 527–551. CrossRefGoogle Scholar
  51. Weber, K., Venkatesh, S., & Srinivasan, M. V. (1997). Insect inspired behaviours for the autonomous control of mobile robots. In M. V. Srinivasan & S. Venkatesh (Eds.), From living eyes to seeing machines (pp. 226–248). Oxford: Oxford University Press. Google Scholar
  52. Zufferey, J.-C., & Floreano, D. (2005). Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2594–2599), Barcelona, Spain. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Serres
    • 1
    Email author
  • D. Dray
    • 1
  • F. Ruffier
    • 1
  • N. Franceschini
    • 1
  1. 1.Biorobotics Dept., Movement and Perception Inst.CNRS / Univ. of the MediterraneanMarseille cedex 09France

Personalised recommendations