Autonomous Robots

, Volume 24, Issue 1, pp 29–48 | Cite as

Extending obstacle avoidance methods through multiple parameter-space transformations

  • Jose-Luis BlancoEmail author
  • Javier González
  • Juan-Antonio Fernández-Madrigal


Obstacle avoidance methods approach the problem of mobile robot autonomous navigation by steering the robot in real-time according to the most recent sensor readings, being suitable to dynamic or unknown environments. However, real-time performance is commonly gained by ignoring the robot shape and some or all of its kinematic restrictions which may lead to poor navigation performance in many practical situations.

In this paper we propose a framework where a kinematically constrained and any-shape robot is transformed in real-time into a free-flying point in a new space where well-known obstacle avoidance methods are applicable. Our contribution with this framework is twofold: the definition of generalized space transformations that cover most of the existing transformational approaches, and a reactive navigation system where multiple transformations can be applied concurrently in order to optimize robot motion decisions. As a result, these transformations allow existing obstacle avoidance methods to perform better detection of the surrounding free-space, through “sampling” the space with paths compatible with the robot kinematics.

We illustrate how to design these space transformations with some examples from our experience with real robots navigating in indoor, cluttered, and dynamic scenarios. Also, we provide experimental results that demonstrate the advantages of our approach over previous methods when facing similar situations.


Mobile robots Path planning Obstacle avoidance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkin, R. C. (1998). Behaviour-based robotics. Cambridge: MIT Press. Google Scholar
  2. Arras, K. O., Persson, J., Tomatis, N., & Siegwart, R. (2002). Real-time obstacle avoidance for polygonal robots with a reduced dynamic window. In IEEE international conference on robotics and automation (Vol. 3, pp. 3050–3055). Google Scholar
  3. Balch, T., & Arkin, R. (1993). Avoiding the past: a simple but effective strategy for reactive navigation. In IEEE international conference on robotics and automation (Vol. 1, pp. 678–685). Google Scholar
  4. Blanco, J. L., Gonzalez, J., & Fernández-Madrigal, J. A. (2005). The TP-Space: Foundations and applications (Technical report). System Engineering and Automation Dept., University of Malaga. Google Scholar
  5. Borenstein, J., & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179–1187. CrossRefGoogle Scholar
  6. Borenstein, J., & Koren, Y. (1991). The vector field histogram—fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288. CrossRefGoogle Scholar
  7. Feiten, W., Bauer, R., & Lawitzky, G. (1994). Robust obstacle avoidance in unknown and cramped environments. IEEE international conference on robotics and automation (Vol. 3, pp. 2412–2417). Google Scholar
  8. Fernández-Madrigal, J. A., Galindo, C., & González, J. (2004). Assistive navigation of a robotic wheelchair using a multihierarchical model of the environment. Integrated Computer-Aided Engineering, 11(4), 309–322. Google Scholar
  9. Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17(7), 760–772. CrossRefGoogle Scholar
  10. Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4, 23–33. CrossRefGoogle Scholar
  11. González, J., Galindo, C., Blanco, J. L., Muñoz, A. J., Arevalo, V., & Fernández-Madrigal, J. A. (2006). The robotic wheelchair SENA project. In DAAAM international scientific book 2006 (Chap. 20). ISSN 1726-9687. Google Scholar
  12. Haddad, H., Khatib, M., Lacroix, S., & Chatila, R. (1998). Reactive navigation in outdoor environments using potential fields. In IEEE international conference on robotics and automation (Vol. 2, pp. 1232–1237). Google Scholar
  13. Khatib, M., Jaouni, H., Chatila, R., & Laumond, J. P. (1997). Dynamic path modification for car-like nonholonomic mobile robots. In IEEE international conference on robotics and automation (ICRA) (Vol. 4, pp. 2920–2925). Google Scholar
  14. Lamiraux, F., Bonnafous, D., & Lefebvre, O. (2004). Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6), 967–977. CrossRefGoogle Scholar
  15. Latombe, C. (1991). Robot motion planning. Dordrech: Kluwer Academic. Google Scholar
  16. Laumond, J. P., & Souères, P. (1993). Metric induced by the shortest paths for a car-like mobile robot. In IEEE international conference on intelligent robots and systems (Vol. 2, pp. 1299–1304). Google Scholar
  17. Lozano-Pérez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238. CrossRefGoogle Scholar
  18. Minguez, J., & Montano, L. (2004). Nearness Diagram (ND) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation, 20(1), 45–59. CrossRefGoogle Scholar
  19. Minguez, J., & Montano, L. (2006). Abstracting vehicle shape and kinematics constraints from obstacle avoidance methods. Autonomous Robots, 20(1), 43–59. CrossRefGoogle Scholar
  20. Murphy, R. R. (2000). Introduction to AI robotic. Cambridge: MIT Press. Google Scholar
  21. Quinlan, S., & Khatib, O. (1993). Elastic bands: connecting path planning and control. In IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 802–807). Google Scholar
  22. Pal, P. K., & Kar, A. (1995). Mobile robot navigation using a neural net. In IEEE international conference on robotics and automation (Vol. 2, pp. 1503–1508). Google Scholar
  23. Ramirez, G., & Zeghloul, S. (2001). Collision-free path planning for non-holonomic mobile robots using a new obstacle representation in the velocity space. Robotica, 19, 543–555. CrossRefGoogle Scholar
  24. Reeds, J. A., & Schepp, R. A. (1990). Optimal paths for a cat that goes both forward and backward. Pacific Journal of Mathematics, 145(2), 367–393. MathSciNetGoogle Scholar
  25. Schlegel, C. (1998). Fast local obstacle avoidance under kinematics and dynamic constraints for a mobile robot. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 594–599). Google Scholar
  26. Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In IEEE international conference on robotics and automation (ICRA) (Vol. 4, pp. 3375–3382). Google Scholar
  27. Souères, P., & Laumond, J. P. (1996). Shortest paths synthesis for a car-like robot. IEEE Transactions on Automation and Control, 41(5), 672–688. zbMATHCrossRefGoogle Scholar
  28. Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141. zbMATHCrossRefGoogle Scholar
  29. Vendittelli, M., Laumond, J. P., & Nissoux, C. (1999). Obstacle distance for car-like robots. IEEE Transactions on Robotics and Automation, 15(4), 678–691. CrossRefGoogle Scholar
  30. Xu, H., & Yang, S. X. (2002). Real-time collision-free motion planning of non-holonomic robots using a neural dynamics based approach. In IEEE international conference on robotics and automation (ICRA) (Vol. 3, pp. 3087–3092). Google Scholar
  31. Zhang, L., Kim, Y. J., Varadhan, G., & Manocha, D. (2006). Fast C-Obstacle query computation for motion planning. In IEEE international conference on robotics and automation (ICRA) (pp. 3035–3040). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jose-Luis Blanco
    • 1
    Email author
  • Javier González
    • 1
  • Juan-Antonio Fernández-Madrigal
    • 1
  1. 1.System Engineering and Automation DepartmentUniversity of MálagaMálagaSpain

Personalised recommendations