Autonomous Robots

, Volume 24, Issue 3, pp 247–266 | Cite as

Design and evaluation of a reactive and deliberative collision avoidance and escape architecture for autonomous robots

  • Jonathan Evans
  • Pedro Patrón
  • Ben Smith
  • David M. Lane
Article

Abstract

We present the design and evaluation of an architecture for collision avoidance and escape of mobile autonomous robots operating in unstructured environments. The approach mixes both reactive and deliberative components. This provides the vehicle’s behavior designers with an explicit means to design-in avoidance strategies that match system requirements in concepts of operations and for robot certification. The now traditional three layer architecture is extended to include a fourth Scenario layer, where scripts describing specific responses are selected and parameterized on the fly. A local map is maintained using available sensor data, and adjacent objects are combined as they are observed. This has been observed to create safer trajectories. Objects have persistence and fade if not re-observed over time. In common with behavior based approaches, a reactive layer is maintained containing pre-defined knee jerk responses for extreme situations. The reactive layer can inhibit outputs from above. Path planning of updated goal point outputs from the Scenario layer is performed using a fast marching method made more efficient through lifelong planning techniques. The architecture is applied to applications with Autonomous Underwater Vehicles. Both simulated and open water tests are carried out to establish the performance and usefulness of the approach.

Keywords

Obstacle avoidance Robot architecture Deliberative Reactive Planning Autonomous underwater vehicle Unstructured environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J. S., McCain, H. G., & Lumia, R. (1989). NASA/NBS standard reference model for telerobot control system architecture (Nasrem) (Tech. Report 1,235). National Institute of Standards and Technology, Gaithersburg, MD. Google Scholar
  2. Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press. Google Scholar
  3. Belcher, E. O., Fo, W. L. J., & Hanot, W. H. (2002) Dual-frequency acoustic camera: a candidate for an obstacle avoidance, gap-filler, and identification sensor for untethered underwater vehicles. In Proceedings of the oceans 2002 MTS/IEEE (Vol. 4, pp. 2124–2128), 29–31 October 2002. Google Scholar
  4. Brooks, R. A. (1986). A robust layered control system for a mobile robots. IEEE Transactions on Robotics and Automation, 1(1), 1–10. Google Scholar
  5. Fodrea, L. R. (2002). Obstacle avoidance control for the REMUS autonomous underwater vehicle. MSc Dissertation, Naval Postgraduate School. Monterey, CA. Report No. A163114. Google Scholar
  6. Gonzalez, J. P., Nagy, B., & Stentz, A. (2006). The geometric path planner for navigating unmanned vehicles in dynamic environments. In Proceedings ANS 1st joint emergency preparedness and response and robotic and remote systems, February 2006. Google Scholar
  7. Goodridge, S. G., Kay, M. G., & Luo, R. C. (1996). Multilayered fuzzy behavior fusion for real-time reactive control of systems with multiple sensors. IEEE Transactions on Industrial Electronics, 43(3), 387–394. CrossRefGoogle Scholar
  8. Hayashi, Y., Buckley, J. J., & Czogala, E. (1992). Fuzzy expert systems versus neural networks. In IJCNN, international joint conference on neural networks (Vol. 2, pp. 720–725), June 1992. Google Scholar
  9. IEEE international conference on robotics and automation. (2006). Annual conference. Motion planning sessions. Google Scholar
  10. Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–99. CrossRefMathSciNetGoogle Scholar
  11. Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong planning A*. Artificial Intelligence, 155(1–2), 93–146. MATHCrossRefMathSciNetGoogle Scholar
  12. Koren, Y., & Borenstein, J. (1991). Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of the IEEE conference on robotics and automation (Vol. 2, pp. 1398–1404), April 1991. Google Scholar
  13. Lane, D. M., & Stoner, J. P. (1994). Automated sonar interpretation using qualitative feature matching. IEEE Journal Oceanic Engineering, 19(3). Google Scholar
  14. Lane, D. M., Dai, D. Y., & Chantler, M. J. (1998). Robust tracking of multiple objects in sector scan sonar image sequences using optical flow motion estimation. IEEE Journal of Oceanic Engineering, 23(1). Google Scholar
  15. Latombe, J.C. (1991). Robot motion planning. Kluwer: Dordrecht. Google Scholar
  16. Lebart, K., Smith, C., Trucco, E., & Lane, D. M. (2003). Automatic indexing of underwater survey video: Algorithm and benchmarking method. IEEE Journal of Oceanic Engineering, 28(4), 673–686. CrossRefGoogle Scholar
  17. Lyons, D. M., & Arkin, R. C. (2004). Towards performance guarantees for emergent behavior. In: Proceedings of the IEEE international conference on robotics and automation (Vol. 4, pp. 4153–4158). Google Scholar
  18. Patrón, P., & Tena Ruiz, I. (2006). A smooth simultaneous localization and mapping solution to improve situational awareness, mission planning and re-planning for AUVs. In World maritime technology conference—advances in technology for underwater vehicles, March 2006. Google Scholar
  19. Petillot, Y., Tena Ruiz, I., & Lane, D. M. (2001). Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE Journal Oceanic Engineering, 26(2), 240–251. CrossRefGoogle Scholar
  20. Pêtrès, C., & Patrón, P. (2005). Path planning for unmanned underwater vehicles. In 19th international joint conference on artificial intelligence, Edinburgh, Scotland, July 2005. Google Scholar
  21. Pêtrès, C., Pailhas, Y., Evans, J., Petillot, Y., & Lane, D. M. (2005). Underwater vehicle obstacle avoidance using fast marching algorithms. In Proceedings of ocean 2005 conference, Brest, France, 21 June 2005. Google Scholar
  22. Pêtrès, C., Pailhas, Y., Petillot, Y., & Lane, D. M. (2007). Path planning for autonomous underwater vehicles. IEEE Transactions Robotics, 23(3). Google Scholar
  23. Pirjanian, P., & Matarie, M. (2000). Multi-robot target acquisition using multiple objective behavior coordination. In ICRA 2000 (pp. 2696–2702). Google Scholar
  24. Quinn, A. W., & Lane, D. M. (1994). Local motion planning for underwater manipulators using distributed search. In IFAC international symposium on robot control SYROCO 94, Capri, Italy, 19–21 September 1994 Google Scholar
  25. Reed, S., Petillot, Y., & Bell, J. (2003). An unsupervised approach to the detection and extraction of mine features in sidescan sonar. IEEE Journal Oceanic Engineering, 28(1), 90–105. CrossRefGoogle Scholar
  26. Reed, S., Ten Ruiz, I., Capus, C., & Petillot, Y. (2006). The fusion of large scale classified side-scan sonar image mosaics. IEEE Transactions on Image Processing, 15(7), 2049–2060. CrossRefGoogle Scholar
  27. Rubo, Z., Guochang, G., & Guoyin, Z. (1997). AUV obstacle-avoidance based on information fusion of multi-sensors. In IEEE international conference on intelligent processing systems (Vol. 2, pp. 1381–1384), 28–31 October 1997. Google Scholar
  28. Schöner, G., Dose, M., & Engels, C. (1995). Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous Systems, 16, 213–245. CrossRefGoogle Scholar
  29. Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4). Google Scholar
  30. Tena Ruiz, I., Lane, D. M., & Chantler, M. J. (1999). Robustness investigation of object classification in sector scan sonar image sequences using inter-frame features. IEEE Journal Oceanic Engineering, 24(4), 458–469. CrossRefGoogle Scholar
  31. Tena Ruiz, I., de Raucourt, S., Petillot, Y., & Lane, D. M. (2004). Concurrent mapping and localization using side-scan sonar. IEEE Journal Oceanic Engineering, 29(2), 442–456. CrossRefGoogle Scholar
  32. Tompkins, P., Stentz, A., & Wettergreen, D. (2006). Mission-level path planning and re-planning for rover exploration. Robotics and Autonomous Systems, Intelligent Autonomous Systems, 54(2), 174–183. CrossRefGoogle Scholar
  33. Trucco, E., Petillot, Y., Tena Ruiz, I., Plakas, C., & Lane, D. M. (2000). Feature tracking in video and sonar subsea sequences, with applications. Computer Vision and Image Understanding, 79, 92–122. CrossRefGoogle Scholar
  34. Wang, Y., & Lane, D. M. (1997). Subsea vehicle path planning using nonlinear programming and constructive solid geometry. IEE Proceedings Control Theory & Applications, 144(2), 143–152. MATHCrossRefGoogle Scholar
  35. Wang, Y., & Lane, D. M. (2000). Robot motion planning using constrained optimisation with AND/OR relationships and constructive solid geometry. IEEE Transactions on Systems, Man, and Cybernetics, 30(4), 525–536. CrossRefGoogle Scholar
  36. Wang, Y., Lane, D. M., & Falconer, G. J. (2000). Two novel approaches for unmanned underwater vehicle path planning: constrained optimisation and semi-infinite constrained optimisation. Robotica, 18, 123–142. CrossRefGoogle Scholar
  37. Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2), 103–111. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jonathan Evans
    • 1
  • Pedro Patrón
    • 1
  • Ben Smith
    • 1
  • David M. Lane
    • 1
  1. 1.Ocean Systems LaboratoryHeriot-Watt UniversityEdinburghUK

Personalised recommendations