Autonomous Robots

, Volume 24, Issue 1, pp 1–12 | Cite as

A unifying framework for robot control with redundant DOFs

  • Jan Peters
  • Michael Mistry
  • Firdaus Udwadia
  • Jun Nakanishi
  • Stefan Schaal
Open Access
Article

Abstract

Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

Keywords

Non-linear control Robot control Tracking control Gauss’ principle Constrained mechanics Optimal control Kinematic redundancy 

References

  1. Arimoto, S. (1996). Control theory of nonlinear mechanical systems: a passivity-based and circuit-theoretic approach. Oxford engineering science series. Oxford: Oxford University Press. Google Scholar
  2. Baillieul, J., & Martin, D. P. (1990). Resolution of kinematic redundancy. In Proceedings of symposium in applied mathematics (Vol. 41, pp. 49–89), San Diego, May 1990. Providence: American Mathematical Society. Google Scholar
  3. Bruyninckx, H., & Khatib, O. (2000). Gauss’ principle and the dynamics of redundant and constrained manipulators. In Proceedings of the 2000 IEEE international conference on robotics & automation (pp. 2563–2569). Google Scholar
  4. Chung, W., Chung, W., & Youm, Y. (1993). Null torque based dynamic control for kinematically redundant manipulators. Journal of Robotic Systems, 10(6), 811–834. MATHCrossRefGoogle Scholar
  5. Craig, J. (1989). Introduction to robotics: mechanics and control. New York: Prentice Hall. MATHGoogle Scholar
  6. Hanafusa, H., Yoshikawa, T., & Nakamura, Y. (1981). Analysis and control of articulated robot with redundancy. In Proceedings of IFAC symposium on robot control (Vol. 4, pp. 1927–1932). Google Scholar
  7. Hollerbach, J. M., & Suh, K. C. (1987). Redundancy resolution of manipulators through torque optimization. International Journal of Robotics and Automation, 3(4), 308–316. CrossRefGoogle Scholar
  8. Hsu, P., Hauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators. Journal of Robotic Systems, 6(2), 133–148. MATHCrossRefGoogle Scholar
  9. Isidori, A. (1995). Nonlinear control systems. Berlin: Springer. MATHGoogle Scholar
  10. Kazerounian, K., & Wang, Z. (1988). Global versus local optimization in redundancy resolution of robotic manipulators. International Journal of Robotics Research, 7(5), 3–12. CrossRefGoogle Scholar
  11. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53. Google Scholar
  12. Khatib, O., Sentis, L., Park, J., & Warren, J. (2004). Whole body dynamic behavior and control of human-like robots. International Journal of Humanoid Robotics, 1(1), 29–43. CrossRefGoogle Scholar
  13. Maciejewski, A., & Klein, C. (1985). Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. International Journal of Robotics Research, 4(3), 109–117. CrossRefGoogle Scholar
  14. Minamide, N., & Nakamura, K. (1969). Minimum error control problem in Banach space. Research Report of Automatic Control Lab 16, Nagoya University, Nagoya, Japan. Google Scholar
  15. Nakamura, Y. (1991). Advanced robotics: redundancy and optimization. Reading: Addison-Wesley. Google Scholar
  16. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based control of robot manipulators. International Journal of Robotics Research, 6(2), 3–15. CrossRefGoogle Scholar
  17. Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2005). Comparative experiments on task space control with redundancy resolution. In IEEE international conference on intelligent robots and systems (IROS 2005), Edmonton, Alberta, Canada. Google Scholar
  18. Park, J., Chung, W.-K., & Youm, Y. (1995). Specification and control of motion for kinematically redundant manipulators. In Proceedings international conference of robotics systems. Google Scholar
  19. Park, J., Chung, W.-K., & Youm, Y. (2002). Characterization of instability of dynamic control for kinematically redundant manipulators. In Proceedings of the IEEE international conference on robotics and automation. Google Scholar
  20. Pratt, J., & Pratt, G. (1998). Intuitive control of a planar bipedal walking robot. In Proceedings of the 1998 IEEE international conference on robotics & automation (pp. 1024–2021). Google Scholar
  21. Samson, C., Borgne, M. L., & Espiau, B. (1991). Oxford engineering science series. Robot control: the task function approach. Oxford: Oxford University Press. Google Scholar
  22. Sciavicco, L., & Siciliano, B. (1996). Modeling and control of robot manipulators. New York: McGraw-Hill. Google Scholar
  23. Sentis, L., & Khatib, O. (2004). A prioritized multi-objective dynamic controller for robots in human environments. In International conference on humanoid robots, Los Angeles, USA. New York: IEEE/RSJ. Google Scholar
  24. Sentis, L., & Khatib, O. (2005). Control of free-floating humanoid robots through task prioritization. In International conference on robotics and automation (pp. 1730–1735), Barcelona, Spain. New York: IEEE. Google Scholar
  25. Siciliano, B., & Slotine, J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In International conference on advanced robotics (pp. 1211–1216), Pisa, Italy. New York: IEEE. Google Scholar
  26. Spo (1984). On pointwise optimal control strategies for robot manipulators. Princeton: Princeton University Press. Google Scholar
  27. Spong, M., Thorp, J., & Kleinwaks, J. (1986). The control of robot manipulators with bounded input. IEEE Transactions on Automatic Control, 31(6), 483–490. MATHCrossRefGoogle Scholar
  28. Suh, K. C., & Hollerbach, J. M. (1987). Local versus global torque optimization of redundant manipulators. In Proceedings of the IEEE international conference on robotics and automation (pp. 619–624). Google Scholar
  29. Udwadia, F. E. (2003). A new perspective on tracking control of nonlinear structural and mechanical systems. Proceedings of the Royal Society of London Series A, 2003, 1783–1800. MathSciNetGoogle Scholar
  30. Udwadia, F. E., & Kalaba, R. E. (1996). Analytical dynamics: a new approach. Cambridge: Cambridge University Press. Google Scholar
  31. Wahba, G., & Nashed, M. Z. (1973). The approximate solution of a class of constrained control problems. In Proceedings of the sixth Hawaii international conference on systems sciences, Hawaii. Google Scholar
  32. Wit, C. A. C. D., Siciliano, B., & Bastin, G. (1996). Theory of robot control. Telos: Springer. MATHGoogle Scholar
  33. Yamane, K., & Nakamura, Y. (2003). Natural motion animation through constraining and deconstraining at will constraining and deconstraining at will. IEEE Transactions on Visualization and Computer Graphics, 9(3). Google Scholar
  34. Yoshikawa, T. (1990). Foundations of robotics: analysis and control. Cambridge: MIT Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jan Peters
    • 1
    • 4
  • Michael Mistry
    • 1
  • Firdaus Udwadia
    • 1
  • Jun Nakanishi
    • 2
    • 3
  • Stefan Schaal
    • 1
    • 2
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.ATR Computational Neuroscience LaboratoriesKyotoJapan
  3. 3.ICORP, Japan Science and Technology AgencyKyotoJapan
  4. 4.Department SchölkopfMax-Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations