Autonomous Robots

, Volume 23, Issue 3, pp 197–212 | Cite as

Vision-based motion planning for an autonomous motorcycle on ill-structured roads

  • Dezhen Song
  • Hyun Nam Lee
  • Jingang Yi
  • Anthony Levandowski
Article

Abstract

We report our development of a vision-based motion planning system for an autonomous motorcycle designed for desert terrain, where uniform road surface and lane markings are not present. The motion planning is based on a vision vector space (V2-Space), which is a unitary vector set that represents local collision-free directions in the image coordinate system. The V2-Space is constructed by extracting the vectors based on the similarity of adjacent pixels, which captures both the color information and the directional information from prior vehicle tire tracks and pedestrian footsteps. We report how the V2-Space is constructed to reduce the impact of varying lighting conditions in outdoor environments. We also show how the V2-Space can be used to incorporate vehicle kinematic, dynamic, and time-delay constraints in motion planning to fit the highly dynamic requirements of the motorcycle. The combined algorithm of the V2-Space construction and the motion planning runs in O(n) time, where n is the number of pixels in the captured image. Experiments show that our algorithm outputs correct robot motion commands more than 90% of the time.

Keywords

Vision-based navigation Autonomous motorcycle Mobile robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufrere, R., Gowdy, J., Mertz, C., Thorpe, C., Wang, C.-C., & Yata, T. (2003). Perception for collision avoidance and autonomous driving. Mechatronics, 13(10), 1149–1161. CrossRefGoogle Scholar
  2. Avina-Cervantes, G., Devy, M., & Marin-Hernandez, A. (2003). Lane extraction and tracking for robot navigation in agricultural applications. In The 11th international conference on advanced robotics (pp. 816–821), Coimbra, Portugal, June 2003. Google Scholar
  3. Bertozzi, M., & Broggi, A. (1998). GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Transaction on Image Processing, 7(1), 62–81. CrossRefGoogle Scholar
  4. Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., & Porta, M. (2002). Artificial vision in road vehicles. Proceedings of IEEE, 90(7), 1258–1271. CrossRefGoogle Scholar
  5. Borenstein, J., & Koren, Y. (1991). The vector field histogram- fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation, 7(3), 278–288. CrossRefGoogle Scholar
  6. Broggi, A., & Berte, S. (1995). Vision-based road detection in automotive systems: a real-time expectation-driven approach. Journal of Artificial Intelligence Research, 3, 325–348. Google Scholar
  7. Buluswar, S. D., & Draper, B. A. (1998). Color machine vision for autonomous vehicles. International Journal for Engineering Applications of Artificial Intelligence, 1(2), 245–256. CrossRefGoogle Scholar
  8. Cowan, N. J., Weingarten, J. D., & Koditschek, D. E. (2002). Visual servoing via navigation functions. IEEE Transactions on Robotics and Automation, 18(4), 521–533. CrossRefGoogle Scholar
  9. Crisman, J., & Thorpe, C. (1991). UNSCARF, a color vision system for the detection of unstructured roads. In Proceedings of IEEE international conference on robotics and automation (Vol. 3, pp. 2496–2501), Sacramento, CA, April 1991. Google Scholar
  10. Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., & Bradski, G. (2006). Self-supervised monocular road detection in desert terrain. In Robotics: science and systems, Philadelphia, PA, June 2006. Google Scholar
  11. Davies, E. R. (1997). Machine vision: theory, algorithms, practicalities (2nd ed.). New York: Academic Press. Google Scholar
  12. Desouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–267. CrossRefGoogle Scholar
  13. Dima, C., Vandapel, N., & Hebert, M. (2004). Classifier fusion for outdoor obstacle detection. In Proceedings of IEEE international conference on robotics and automation (Vol. 1, pp. 665–671). April 2004. Google Scholar
  14. Ekinci, M., Gibbs, F. W. J., & Thomas, B. T. (2000). Knowledge-based navigation for autonomous road vehicles. Turkish Journal of Electrical Engineering & Computer Sciences, 8(1), 1–29. Google Scholar
  15. Forsyth, D., & Fonce, J. (Eds.). (2003). Computer vision: a modern approach. Upper Saddle River: Prentice Hall. Google Scholar
  16. Freese, M., Singh, S., Fukushima, E., & Hirose, S. (2006). Bias-tolerant terrain following method for a field deployed manipulator. In IEEE international conference on robotics and automation (pp. 175–180), Orlando, FL, May 2006. Google Scholar
  17. Gevers, T., & Smeulders, A. W. M. (1999). Colour based object recognition. Pattern Recognition, 32, 453–464. CrossRefGoogle Scholar
  18. Grudic, G., & Mulligan, J. (2006). Outdoor path labeling using polynomial mahalanobis distance. In Robotics: science and systems, Philadelphia, PA, June 2006. Google Scholar
  19. Happold, M., Ollis, M., & Johnson, N. (2006). Enhancing supervised terrain classification with predictive unsupervised learning. In Robotics: science and systems, Philadelphia, PA, June 2006. Google Scholar
  20. He, Y., Wang, H., & Zhang, B. (2004). Color-based road detection in urban traffic scenes. IEEE Transactions on Intelligent Transportation Systems, 5(4), 309–318. CrossRefGoogle Scholar
  21. Herbrich, R. (2002). Learning kernel classifiers: theory & algorithms. Cambridge: MIT. Google Scholar
  22. Hong, T., Rasmussen, C., Chang, T., & Shneier, M. (2002). Road detection and tracking for autonomous mobile robots. In Proceedings of the SPIE 16th annual international symposium on aerospace/defense sensing, simulation, and controls, Orlando, FL, April 2002. Google Scholar
  23. Ibanez-Guzman, J., Jian, X., Malcolm, A., Gong, Z., Chan, C., & Tay, A. (2004). Autonomous armored logistics carrier for natural environments. In IEEE/RSJ international conference on intelligent robots and systems (pp. 473–478), Sendai, Japan, September 2004. Google Scholar
  24. Kolesnik, M., Paar, G., Bauer, A., & Ulm, M. (1998). Algorithmic Solution for autonomous vision-based off-road navigation. In Proceedings of SPIE: enhanced and synthetic vision (Vol. 3364, pp. 230–247), Orlando, FL, April 1998. Google Scholar
  25. Lieb, D., Lookingbill, A., & Thrun, S. (2005). Adaptive road following using self-supervised learning and reverse optical flow. In Proceedings of robotics: science and systems, Cambridge, MA, June 2005. Google Scholar
  26. Lorigo, L. M., Brooks, R. A., & Grimsou, W. E. L. (1997). Visually-guided obstacle avoidance in unstructured environments. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Grenoble, France, September 1997. Google Scholar
  27. Ma, Y., Kosecka, J., & Sastry, S. (1999). Vision guided navigation for a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 15(3), 512–37. Google Scholar
  28. Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots, 18(1), 81–102. CrossRefGoogle Scholar
  29. Mateus, D., Avina, G., & Devy, M. (2005). Robot visual navigation in semi-structured outdoor environments. In IEEE international conference on robotics and automation (pp. 4691–4696), Barcelona, Spain, April 2005. Google Scholar
  30. Matthies, L., Litwin, T., Owens, K., Rankin, A., Murphy, K., Coorobs, D., Gilsinn, J., Hong, T., Legowik, S., Nashman, M., & Yoshimi, B. (1998). Performance evaluation of UGV obstacle detection with CCD/FLIR stereo vision and LADAR. In Proceedings of IEEE ISIC/CIRA/ISAS joint conference (pp. 658–670), Gaithersburg, MD, September 1998. Google Scholar
  31. Michels, J., Saxena, A., & Ng, A. (2005). High speed obstacle avoidance using monocular vision and reinforcement learning. In The 22nd international conference on machine learning, Bonn, Germany, August 2005. Google Scholar
  32. Pomerleau, D. (1993). Neural network perception for mobile robot guidance. Dordrecht: Kluwer Academic. Google Scholar
  33. Rasmussen, C. (2004). Grouping dominant orientations for ill-structured road following. In Proceedings of IEEE computer society conference on computer vision and pattern recognition, June 2004. Google Scholar
  34. Rasmussen, C. (2006). A hybrid vision + ladar rural road follower. In IEEE international conference on robotics and automation (pp. 156–161), Orlando, FL, May 2006. Google Scholar
  35. Santos-Victor, J., Sandini, G., Curotto, F., & Garibaldi, S. (1993). Divergent stereo for robot navigation: learning from bees. In Proceedings of IEEE computer society conference on computer vision and pattern recognition, New York, NY, June 1993. Google Scholar
  36. Schaffalitzky, F., & Zisserman, A. (2001). Viewpoint invariant texture matching and wide baseline stereo. In Proceedings of the 8th international conference on computer vision, Vancouver, Canada, July 2001. Google Scholar
  37. Song, D., Lee, H., Yi, J., & Levandowski, A. (2006). Vision-based motion planning for an autonomous motorcycle on ill-structured road. In IEEE/RSJ international conference on intelligent robots (IROS), Beijing, China, October 2006. Google Scholar
  38. Stephens, M. J., Blissett, R. J., Charnley, D., Sparks, E. P., & Pike, J. M. (1989). Outdoor vehicle navigation using passive 3D vision. In Proceedings of IEEE Computer society conference on computer vision and pattern recognition (pp. 556–562). San Diego, CA, USA, June 1989. Google Scholar
  39. Sun, Z., Bebis, G., & Miller, R. (2006). On-road vehicle detection: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 694–711. CrossRefGoogle Scholar
  40. Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based obstacle detection with monocular color vision. In AAAI national conference on artificial intelligence, Austin, TX. Google Scholar
  41. Volpe, R., Estlin, T., Laubach, S., Olson, C., & Balaram, J. (2000). Enhanced Mars rover navigation techniques. In IEEE international conference on robotics and automation (Vol. 1, pp. 926–931), San Francisco, CA, April 2000. Google Scholar
  42. Yi, J., Song, D., Levandowski, A., & Jayasuriya, S. (2006). Trajectory tracking and balance stabilization control of autonomous motorcycles. In IEEE international conference on robotics and automation (ICRA), Orlando, FL, May 2006. Google Scholar
  43. Zhang, A., & Russell, R. (2005). Dominant orientation tracking for path following. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3885–3889), Alberta, Canada, August 2005. Google Scholar
  44. Zhang, H., & Ostrowski, J. P. (2002). Visual motion planning for mobile robots. IEEE Transactions on Robotics and Automation, 18(2), 199–208. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dezhen Song
    • 1
  • Hyun Nam Lee
    • 2
  • Jingang Yi
    • 3
  • Anthony Levandowski
    • 4
  1. 1.Department of Computer ScienceTexas A&M UniversityCollege StationUSA
  2. 2.Department of Electrical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA
  4. 4.Unmanned Systems DivisionENSCO Inc.Falls ChurchUSA

Personalised recommendations