Advertisement

Autonomous Robots

, Volume 23, Issue 2, pp 97–111 | Cite as

A comparison of line extraction algorithms using 2D range data for indoor mobile robotics

  • Viet Nguyen
  • Stefan Gächter
  • Agostino Martinelli
  • Nicola Tomatis
  • Roland Siegwart
Article

Abstract

This paper presents an experimental evaluation of different line extraction algorithms applied to 2D laser scans for indoor environments. Six popular algorithms in mobile robotics and computer vision are selected and tested. Real scan data collected from two office environments by using different platforms are used in the experiments in order to evaluate the algorithms. Several comparison criteria are proposed and discussed to highlight the advantages and drawbacks of each algorithm, including speed, complexity, correctness and precision. The results of the algorithms are compared with ground truth using standard statistical methods. An extended case study is performed to further evaluate the algorithms in a SLAM application.

Keywords

Line extraction algorithm 2D range data Mobile robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. D., & Kerstens, A. (1998). Tracking naturally occurring indoor features in 2D and 3D with lidar range/amplitude data. International Journal of Robotics Research, 17(9), 907–923. CrossRefGoogle Scholar
  2. Alempijevic, A. (2004). High-speed feature extraction in sensor coordinates for laser rangefinders. In Proceedings of the Australasian conference on robotics and automation. Google Scholar
  3. Arras, K. O., & Siegwart, R. (1997). Feature extraction and scene interpretation for map-based navigation and map building. In Proceedings of the symposium on intelligent systems and advanced manufacturing. Google Scholar
  4. Borges, G. A., & Aldon, M.-J. (2004). Line extraction in 2D range images for mobile robotics. Journal of Intelligent and Robotic Systems, 40, 267–297. CrossRefGoogle Scholar
  5. Brunskill, E., & Roy, N. (2005). SLAM using incremental probabilistic PCA and dimensionality reduction. In Proceedings of the IEEE international conference on robotics and automation. Google Scholar
  6. Castellanos, J., & Tardós, J. (1996). Laser-based segmentation and localization for a mobile robot. In Robotics and manufacturing: recent trends in research and applications (Vol. 6). New York: ASME. Google Scholar
  7. Cox, I. J. (1991). Blanche: an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation, 7(2), 193–204. CrossRefGoogle Scholar
  8. Crowley, J. L. (1985). Navigation for an Intelligent mobile robot. IEEE Journal of Robotics and Automation, 1(1), 31–41. Google Scholar
  9. Diosi, A., & Kleeman, L. (2003a). Uncertainty of line segments extracted from static SICK PLS laser scans. In Proceedings of the Australasian conference on robotics and automation. Google Scholar
  10. Diosi, A., & Kleeman, L. (2003b). Uncertainty of line segments extracted from static SICK PLS laser scans. Department of Electrical and Computer Systems Engineering, Monash University, Tech. Rep. MECSE-26-2003. Google Scholar
  11. Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley. zbMATHGoogle Scholar
  12. Einsele, T. (1997). Real-time self-localization in unknown indoor environments using a panorama laser range finder. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 697–702). Google Scholar
  13. Fischler, M., & Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. CrossRefGoogle Scholar
  14. Forsberg, J., Larsson, U., & Wernersson, A. (1995). Mobile robot navigation using the range-weighted hough transform. IEEE Robotics and Automation Magazine, 2(1), 18–26. CrossRefGoogle Scholar
  15. Forsyth, D. A., & Ponce, J. (2003). Computer vision: a modern approach. New York: Prentice Hall. Google Scholar
  16. Gutmann, J.-S., & Schlegel, C. (1996). AMOS: comparison of scan matching approaches for self-localization in indoor environments. In First European workshop on advanced mobile robots (Eurobot). Google Scholar
  17. Gutmann, J.-S., Burgard, W., Fox, D., & Konolige, K. (1998). An experimental comparison of localization methods. In Proceedings of the IEEE/RSJ intenational conference on intelligent robots and systems, IROS. Google Scholar
  18. Howard, A., & Roy, N. (2003). The robotics data set repository (radish). Available: http://radish.sourceforge.net/.
  19. Iocchi, L., & Nardi, D. (2002). Hough localization for mobile robots in polygonal environments. Robotics and Autonomous Systems, 40, 43–58. CrossRefGoogle Scholar
  20. Iyengar, S., & Elfes, A. (1991). Autonomous mobile robots (Vols. 1, 2). Los Alamitos: IEEE Computer Society. Google Scholar
  21. Jensfelt, P., & Christensen, H. (1998). Laser based position acquisition and tracking in an indoor environment. In Proceedings of the IEEE international symposium on robotics and automation (vol. 1). Google Scholar
  22. Leonard, J., Cox, I. J., & Durrant-Whyte, H. (1992). Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 11(4), 286–298. CrossRefGoogle Scholar
  23. Liu, Y., Emery, R., Chakrabarti, D., Burgard, W., & Thrun, S. (2001). Using EM to learn 3D models of indoor environments with mobile robots. In Proceedings of the IEEE international conference on machine learning (ICML). Google Scholar
  24. Lu, F., & Milios, E. (1994). Robot pose estimation in unknown environments by matching 2D range scans. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 935–938). Google Scholar
  25. Nguyen, V., Martinelli, A., Tomatis, N., & Siegwart, R. (2005). A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In Proceedings of the IEEE/RSJ intenational conference on intelligent robots and systems, IROS, Edmonton, Canada. Google Scholar
  26. Nguyen, V., Harati, A., Tomatis, N., Martinelli, A., & Siegwart, R. (2006). OrthoSLAM: a step toward lightweight indoor autonomous navigation. In Proceedings of the IEEE/RSJ intenational conference on intelligent robots and systems, IROS, Beijing, China. Google Scholar
  27. Pavlidis, T., & Horowitz, S. L. (1974). Segmentation of plane curves. IEEE Transactions on Computers, C-23(8), 860–870. CrossRefGoogle Scholar
  28. Pears, N. (2000). Feature extraction and tracking for scanning range sensors. Robotics and Autonomous Systems, 33, 43–58. CrossRefGoogle Scholar
  29. Pfister, S. T., Roumeliotis, S. I., & Burdick, J. W. (2003). Weighted line fitting algorithms for mobile robot map building and efficient data representation. In Proceedings of the IEEE international conference on robotics and automation, ICRA (pp. 1304–1311). Google Scholar
  30. Sack, D., & Burgard, W. (2004). A comparison of methods for line extraction from range data. In Proceedings of the 5th IFAC symposium on intelligent autonomous vehicles. Google Scholar
  31. Schröter, D., Beetz, M., & Gutmann, J.-S. (2002). RG mapping: learning compact and structured 2D line maps of indoor environments. In Proceedings of 11th IEEE international workshop on robot and human interactive communication (ROMAN). Google Scholar
  32. Siadat, A., Kaske, A., Klausmann, S., Dufaut, M., & Husson, R. (1997). An optimized segmentation method for a 2D laser-scanner applied to mobile robot navigation. In Proceedings of the 3rd IFAC symposium on intelligent components and instruments for control applications. Google Scholar
  33. Siegwart, R., Arras, K. O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., & Tomatis, N. (2003). Robox at Expo.02: a large scale installation of personal robots. Special issue on Socially Interactive Robots, Robotics and Autonomous Systems, 42, 203–222. zbMATHGoogle Scholar
  34. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames: Iowa State University Press. zbMATHGoogle Scholar
  35. Taylor, R., & Probert, P. (1996). Range finding and feature extraction by segmentation of images for mobile robot navigation. In Proceedings of the IEEE international conference on robotics and automation, ICRA. Google Scholar
  36. Tomatis, N., Nourbakhsh, I., & Siegwart, R. (2003). Hybrid simultaneous localization and map building: a natural integration of topological and metric. Robotics and Autonomous Systems, 44, 3–14. CrossRefGoogle Scholar
  37. Vandorpe, J., Brussel, H. V., & Xu, H. (1996). Exact dynamic map building for a mobile robot using geometrical primitives produced by a 2D range finder. In Proceedings of the IEEE international conference on robotics and automation, ICRA (pp. 901–908). Google Scholar
  38. Xu, L., Oja, E., & Kultanen, P. (1990). A new curve detection method: randomized hough transform (RHT). Pattern Recognition Letters, 11(5), 331–338. zbMATHCrossRefGoogle Scholar
  39. Zhang, L., & Ghosh, B. K. (2000). Line segment based map building and localization using 2D laser rangefinder. In Proceedings of the IEEE international conference on robotics and automation, ICRA. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Viet Nguyen
    • 1
  • Stefan Gächter
    • 1
  • Agostino Martinelli
    • 1
  • Nicola Tomatis
    • 2
  • Roland Siegwart
    • 1
  1. 1.Autonomous Systems Laboratory (ASL)Swiss Federal Institute of Technology Zürich (ETHZ)ZurichSwitzerland
  2. 2.BlueBotics SALausanneSwitzerland

Personalised recommendations