Autonomous Robots

, Volume 21, Issue 1, pp 79–97 | Cite as

High accuracy path tracking for vehicles in presence of sliding: Application to farm vehicle automatic guidance for agricultural tasks

  • Roland Lenain
  • Benoit Thuilot
  • Christophe Cariou
  • Philippe Martinet


When designing an accurate automated guidance system for vehicles, a major problem is sliding and pseudo-sliding effects. This is especially the case in agricultural applications, where five-centimetre accuracy with respect to the desired trajectory is required, although the vehicles are moving on slippery ground.

It has been established that RTK GPS was a very suitable sensor to achieve automated guidance with such high precision: several control laws have been designed for vehicles equipped with this sensor, and provide the expected guidance accuracy as long as the vehicles do not slide. In previous work, further control developments have been proposed to take sliding into account: guidance accuracy in slippery environments has been shown to be preserved, except transiently at the beginning/end of curves. In this paper, the design of this control law is first recalled and discussed. A Model Predictive Control method is then applied in order to preserve accuracy of guidance even during these curvature transitions. Finally, the overall control scheme is implemented, and improvements with respect to previous guidance laws are demonstrated through full-scale experiments.


Non linear control Adaptive control Model Predictive Control of vehicles Vehicle motion in presence of sliding effects Automated guided vehicle Path tracking of mobile robot Agricultural robots and environmental applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrea-Novel, B.d'., Chou, H., Ellouze M., and Pengov, M. 2001. An optimal control strategy for a vehicle to brake in corner with stability. In Journees Automatique et Automobile, Bordeaux, France.Google Scholar
  2. Bakker, E., Nyborg, L., and Pacejka, H.B. 1987. Tyre modeling for use in vehicle dynamics studies. In International Conference of the Society of Automotive Engineers (SAE), Warrendale USA, pp. 2190–2204.Google Scholar
  3. Borne, P., Dauphin-Tanguy, G., Rotella, F., and Zambettakis, I. 1990. Commande et optimisation de processus. Methodes et pratiques de 1'inge-nieur. TECHNIP Editions. Paris, France.Google Scholar
  4. Brunnert, A. 2003. Machine guidance with laser and GPS. In Conference on Crop Harvesting and Processing. Kentucky, USA.Google Scholar
  5. Cordesses, L. 2001. Commande de robots: applications a 1'asservissement visuel 3D et au guidage d'engins agricoles par GPS. PhD thesis. Universite Blaise Pascal -Clermont-Ferrand, France.Google Scholar
  6. Debain, C., Chateau, T., Berducat, M., Bonton, P., and Martinet, P. 2000. A guidance system for agricultural vehicles. Computers and Electronics in Agriculture, 25(1/2):29–51.Google Scholar
  7. Dormegnie, E., Fandard, G., Mahajoub, G., and Zarka, F. 2002. Dynamique du vehicule. Technical report. IFMA. Clermont-Ferrand France.Google Scholar
  8. Ellouze, M. and Andréa-Novel, B.d'. 2000. Control of unicycle-type robots in the presence of sliding effects with only absolute longitudinal and yaw velocities measurement. European Journal of Control, 6(6):567–584.Google Scholar
  9. Holzhüter, T. and Schultze, R. 1996. Operating experience with a high precision track controller for commercial ships. Control Engineering Practice, 4(3):343–350.Google Scholar
  10. Lenain, R. 2005. Contribution à la modélisation et à la commande de robots mobiles en présence de glissement. PhD thesis. Université Blaise Pascal Clermont-Ferrand II (France).Google Scholar
  11. Lenain, R., Thuilot, B., Cariou, C., and Martinet, P. 2003a. Adaptive control for car like vehicles guidance relying on RTK GPS: Rejection of sliding effects in agricultural applications. In IEEE International Conference on Robotics and Automation. Taipei (Taiwan), Vol. 1. pp. 115–120.Google Scholar
  12. Lenain, R., Thuilot, B., Cariou, C., and Martinet, P. 2003b. Rejection of sliding effects in car like robot control: Application to farm vehicle guidance using a single RTK GPS sensor. In IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas (USA), Vol. 4. pp. 3811–3816.Google Scholar
  13. Lindgren, D.R., Hague, T., Probert-Smith, P.J., and Marchant, J.A. 2002. Relating torque and slip in an odometric model for an autonomous agricultural vehicle. Autonomous Robots, 13(1):73–86.Google Scholar
  14. Lozano, R. and Taoutaou, D. 2001. Identification et commande adaptative, Hermes, Paris, France.Google Scholar
  15. Micaelli, A. and Samson, C. 1993. Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. Technical Report 2097. INRIA. Sophia-Antipolis France.Google Scholar
  16. Nagasaka, Y., Otani, R., Shigeta, K., and Taniwaki, K. 1997. Automated operation in paddy fields with a fiber optic gyro sensor and GPS. In International Workshop on Robotics and Automated Machinery for Bio-Production Bio-Robotics, Valencia, Spain, pp. 21–26.Google Scholar
  17. O'Connor, M., Elkaim, G., Bell, T., and Parkinson, B. 1996. Automatic steering of a farm vehicle using GPS. In International Conference on precision agriculture, Mineapolis, USA, pp. 767–777.Google Scholar
  18. Pham, M. 1986. Modélidation mathématique du comportement dynamique d'une automobile dans le domaine non-linéaire. Revue de la Société des Ingénieurs Automobile. Vol. 40.Google Scholar
  19. Reid, J. and Niebuhr D. 2001. Driverless tractors. Ressource, 8(9):7–8.Google Scholar
  20. Richalet, J. 1993a. Industrial applications of model based predictive control. Automatica, 29(5):1251–1274.Google Scholar
  21. Richalet, J. 1993b. Pratique de la commande predictive. Traite des nouvelles technologies, sèrie automatique, Hermes, Paris, France.Google Scholar
  22. Samson, C. 1995. Control of chained system. IEEE Transaction on Automatic Control, 40:64–77.Google Scholar
  23. Thuilot, B. 1995. Contribution à la modelisation et à la commande de robots mobiles à roues. PhD thesis. Ecole Nationale Supérieure des Mines de Paris (France).Google Scholar
  24. Thuilot, B. Cariou, C., Martinet, P., and Berducat, M. 2002. Automatic guidance of a farm vehicle relying on a single CP-GPS. Autonomous Robots, 13(2):53–71.Google Scholar
  25. Thuilot, B., Lenain, R., Martinet, P., and Cariou, C. 2005. Accurate GPS-based guidance of agricultural vehicles operating on slippery grounds. In J.X. Liu (ed.), Focus on Robotics and Intelligent Systems Research . Nova Science publisher USA.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Roland Lenain
    • 1
  • Benoit Thuilot
    • 2
  • Christophe Cariou
    • 1
  • Philippe Martinet
    • 2
  1. 1.CemagrefAubière CedexFrance
  2. 2.LASMEAAubière CedexFrance

Personalised recommendations