Autonomous Robots

, Volume 21, Issue 3, pp 187–198

Energetically autonomous robots: Food for thought

  • Chris Melhuish
  • Ioannis Ieropoulos
  • John Greenman
  • Ian Horsfield
Article

Abstract

This paper reports on the robot EcoBot-II, which is designed to power itself solely by converting unrefined insect biomass into useful energy using on-board microbial fuel cells with oxygen cathodes. In bench experiments different ‘fuels’ (sugar, fruit and dead flies) were explored in the microbial fuel cell system and their efficiency of conversion to electricity is compared with the maximum available energy calculated from bomb calorimetry trials. In endurance tests EcoBot-II was able to run for 12 days while carrying out phototaxis, temperature sensing and radio transmission of sensed data approximately every 14 min.

Keywords

Artificial autonomy Energy autonomy Pulsed behaviour Microbial fuel cells Oxygen cathode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, W.R. 1952. Design for a Brain. Chapman & Hall, London, UK.MATHGoogle Scholar
  2. Bennetto, H.P. 1990. Electricity generation by microorganisms. Biotech. Ed., 1(4):163–168.Google Scholar
  3. Bond, D.R., Holmes, D.E., Tender, L.M., and Lovley, D.R. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295:483–485.CrossRefGoogle Scholar
  4. Bond, D.R. and Lovley, D.R. 2003. Electricity production by geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69(3):1548–1555.CrossRefGoogle Scholar
  5. Caccavo, Jr. et al. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate- oxidising dissimilatory metal-reducing microorganism. App. Environ. Microbiol., 60(10):3752–3759.Google Scholar
  6. Greenman, G., Kelly, I., Kendall, K., McFarland, D., and Melhuish, C. 2003. Towards robot autonomy in the natural world: A robot in Predator's Clothing. Mechatronics., 13(3):195–228.CrossRefGoogle Scholar
  7. Habermann, W. and Pommer, E.-H. 1991. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol., 35:128–133.CrossRefGoogle Scholar
  8. Hernandez, M.E. and Newman, D.K. 2001. Extracellular electron transfer. Cell. Mol. Life. Sci., 58:1562–1571.CrossRefGoogle Scholar
  9. Holland, O. 1998. Towards true autonomy. In Proc. 29th Int. Symp. Robot. (ISR98), Birmingham, UK, pp. 84–87.Google Scholar
  10. Ieropoulos, I., Greenman, J., and Melhuish, C. 2003a. Imitating metabolism: Energy autonomy in biologically inspired robotics. In Proc. AISB ‘03, 2nd Int. Symp. on Imit. Animals Artifacts, Aberystwyth, Wales, pp. 191–194.Google Scholar
  11. Ieropoulos, I., Melhuish, C., and Greenman, J. 2003b. Artificial Metabolism: Towards True Energetic Autonomy in Artificial Life. In Proc. 7th Euro. Conf. Artif. Life (ECAL), Dortmund, Germany, pp. 792–799.Google Scholar
  12. Ieropoulos, I., Melhuish, C., and Greenman, J. 2004. Energetically Autonomous Robots. In Proc. 8th Conf. Intell. Autonom. Sys. (IAS-8), Amsterdam, The Netherlands, pp. 128–135.Google Scholar
  13. Ieropoulos, I., Greenman, J., Melhuish, C., and Hart, J. 2005a. Comparison of three different types of Microbial Fuel Cell. Enz. Microb. Technol., 37(2):238–245.CrossRefGoogle Scholar
  14. Ieropoulos, I., Melhuish, C., Greenman, J., and Hart, J. 2005b. Energy accumulation and improved performance in microbial fuel cells. Power Sources, 145(2):253–256.CrossRefGoogle Scholar
  15. Ieropoulos, I., Melhuish, C., Greenman, J., and Horsfiled, I. 2006. EcoBot-II: An artificial agent with a natural metabolism. Int. J. Adv. Robot. Syst. (in press).Google Scholar
  16. Kaufmann, S. 2000. Investigations, Oxford University Press, New York, USA.Google Scholar
  17. Kester, D., Duedall, I., Connors, D., and Pytkowicz, R. 1967. Preparation of artificial seawater. Limnol. Oceanogr., 12:176–179.CrossRefGoogle Scholar
  18. Kim, B.H. 1998. Development of a Mediator-less Microbial Fuel Cell. In Abst. 98th Gener. Meet. Amer. Soc. Microbiol., Washington, DC, USA, Paper # 0–12, Session 116-0.Google Scholar
  19. Kubo, M. and Melhuish, C. 2004. Robot Trophallaxis: Managing Energy Autonomy in Multiple Robots. In Proc. Towards Autonom. Robot. Sys. (TAROS 04), Colchester, UK, pp. 77–84.Google Scholar
  20. Liu, H., Ramnarayanan, R., and Logan, B.E. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 38(7):2281–2285.CrossRefGoogle Scholar
  21. McFarland, D. and Spier, E. 1997. Basic cycles, utility and opportunism in self-sufficient robots. Robot. Autonom. Sys., 20:179–190.CrossRefGoogle Scholar
  22. Melhuish, C. and Kubo, M. 2004. Collective Energy Distribution: Maintaining the Energy balance in Distributed Autonomous Robots. In Proc. 7th Int. Symp. Distrib. Autonom. Robot. Sys., Toulouse, France, pp. 261–270.Google Scholar
  23. Min, B. and Logan, B.E. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38(21):5809–5814.CrossRefGoogle Scholar
  24. Rabaey, K., Boon, N., Siciliano, D., Verhaege, M., and Verstraete, W. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. App. Environ. Microbiol., 70(9):5373–5382.CrossRefGoogle Scholar
  25. Sigfridsson, K. 1998. Plastocyanine, an electron-transfer protein. Photosynth. Res., 57:1–28.CrossRefGoogle Scholar
  26. Squyres, W.S., Arvidson, R.E., Bell, III J.F., Bruckner, J., Cabrol, N.A., Calvin, W. et al. 2004. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science, 305:794–799.CrossRefGoogle Scholar
  27. Wilkinson, S. 2001. Hungry for success—future directions in gastrobotics research. Industrial Robot, 28(3):213–219.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Chris Melhuish
    • 1
  • Ioannis Ieropoulos
    • 1
    • 2
  • John Greenman
    • 1
    • 2
  • Ian Horsfield
    • 1
  1. 1.Intelligent Autonomous Systems Lab, CEMS FacultyUniversity of the West of EnglandBristolUK
  2. 2.Faculty of Applied SciencesUniversity of the West of EnglandBristolUK

Personalised recommendations