Advertisement

Atomic Energy

, Volume 125, Issue 2, pp 95–102 | Cite as

Mechanism of Change In VVER-440, -1000 Vessel Material Properties in Irradiation–Recovery Annealing–Irradiation Cycle

  • B. A. Gurovich
  • E. A. Kuleshova
  • D. A. Mal’tsev
  • Yu. M. Semchenkov
  • A. S. Frolov
  • Ya. I. Shtrombakh
  • A. V. Shutikov
Article
  • 1 Downloads

The efficacy of recovery annealing of weld-seam metal for VVER vessel service life extension is examined. A comparative complex assessment of the degradation of VVER-440, -1000 weld-seam metal, as most subjected to radiation embrittlement due to operational factors, is presented. The main difference of the recovery annealing regimes associated with differences of their chemical composition and structural-phase state as well as the mechanisms of the degradation of the structure and properties during operation is substantiated. Comparative studies of the recovery of the structural state and mechanical properties of weld-seam metal after annealing in the chosen regimes as well as radiation embrittlement during re-irradiation were performed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Nikolaev, A. V. Nikolaeva, and Yu. R. Kevorkin, “Recovery of the properties of irradiation steel during thermal annealing,” At. Energ., 90, No. 6, 457–460 (2001).Google Scholar
  2. 2.
    P. A. Platonov, Y. A. Nikolaev, and Y. I. Shtrombakh, “Radiation embrittlement kinetics of the fi rst generation of VVER-440 RVPs after post-irradiation annealing,” Intern. J. Press. Vessel. Pip., 79, No. 8–10, 643–648 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Kryukov, P. Platonov, Ya. Shtrombakh, et al., “Investigation of samples taken from Kozloduy unit 2 reactor pressure vessel,” Nucl. Eng. Des., 160, No. 1– 2, 59–76 (1996).CrossRefGoogle Scholar
  4. 4.
    Yu. Korolev, A. Kryukov, Yu. Nikolaev, et al., “The properties of WWER-440 type reactor pressure vessel steels cut out from operated units,” ibid., 195, No. 2, 137–142 (2000).Google Scholar
  5. 5.
    B. Z. Margolin, V. A. Nikolayev, E. V. Yurchenko, et al., “Analysis of embrittlement of WWER-1000 RPV materials,” Intern. J. Press. Vessel. Pip., 89, 178–186 (2012).CrossRefGoogle Scholar
  6. 6.
    B. Z. Margolin, V. A. Nikolaev, E. V. Yurchenko, et al., “A new approach to description of in-service embrittlement of WWER-1000 reactor pressure vessel materials,” Strength Mater., 42, No. 1, 2–16 (2010).CrossRefGoogle Scholar
  7. 7.
    K. Fukuya, “Current understanding of radiation-induced degradation in light water reactor structural materials,” J. Nucl. Sci. Technol., 50, No. 3, 213–254 (2013).CrossRefGoogle Scholar
  8. 8.
    S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, et al., “Investigation of the fi ne structure of weld seam materials with high content of phosphorys of the VVER-440 vessel after irradiation, annealing, and re-irradiation,” Yad. Fiz. Inzhiniring, 4, No. 1, 73–82 (2013).Google Scholar
  9. 9.
    E. Eason, R. Odette, R. Nanstad, et al., “A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels,” J. Nucl. Mater., 433, No. 1–3, 240–254 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. K. Miller, A. A. Chernobaeva, Ya. I. Shtrombakh, et al., “Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing,” ibid., 385, No. 3, 615–622 (2009).Google Scholar
  11. 11.
    B. Gurovich, E. Kuleshova, Ya Shtrombakh, et al., “Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors,” ibid., 434, 72–84 (2013).Google Scholar
  12. 12.
    Ya. I. Strombakh, B. A. Gurovich, E. A. Kuleshova, et al., “Experimental evaluation of the effi ciency of recovery annealing of VVER-100 vessels,” At. Energ., 109, No. 4, 205–213 (2010).Google Scholar
  13. 13.
    E. A. Kuleshova, B. A. Gurovich, Z. V. Lavrukhina, et al., “Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation,” J. Nucl. Mater., 477, 110–122 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    B. Gurovich, E. Kuleshova, Ya. Shtrombakh, et al., “Evolution of microstructure and mechanical properties of VVER-1000 RPV steels under re-irradiation,” ibid., 456, 373–381 (2015).Google Scholar
  15. 15.
    G. Odette, T. Yamamoto, and D. Klingensmith, “On the effect of dose rate on irradiation hardening of RPV steels,” Philos. Mag., 85, No. 4–7, 779–797 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    D. Yu. Erak, V. B. Papina, A. A. Chernobaeva, et al., “Radiation embrittlement of VVER-440 vessel materials after annealing,” Vopr. At. Nauki Tekhn. Ser. Fiz. Yad. Reakt., No. 2, 67–78 (2017).Google Scholar
  17. 17.
    A. Ballesteros, R. Ahlstrand, C. Bruynooghe, et al., “Irradiation temperature, fl ux and spectrum effects,” Prog. Nucl. Energy, 53, No. 6, 756–759 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Yu. Erak, D. A. Zhurko, and V. B. Papina, “Interpretation of accelerated irradiation results for materials of WWER- 1000 reactor pressure vessels,” Strength Mater., 45, No. 4, 424–432 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. A. Gurovich
    • 1
  • E. A. Kuleshova
    • 1
  • D. A. Mal’tsev
    • 1
  • Yu. M. Semchenkov
    • 1
  • A. S. Frolov
    • 1
  • Ya. I. Shtrombakh
    • 1
  • A. V. Shutikov
    • 2
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Rosenergoatom ConcernMoscowRussia

Personalised recommendations