Advertisement

Atomic Energy

, Volume 124, Issue 4, pp 232–237 | Cite as

SAFR/V1 (EVKLID/V2 Integral Code Module) Aided Simulation of Melt Movement Along the Surface of a Fuel Element in a Fast Reactor During a Serious Accident

  • E. V. Usov
  • A. A. Butov
  • V. I. Chukhno
  • I. A. Klimonov
  • I. G. Kudashov
  • V. S. Zhdanov
  • N. A. Pribaturin
  • N. A. Mosunova
  • V. F. Strizhov
Article
  • 7 Downloads

The basic approaches used in the SAFR/V1 module of the integral code EVKLID/V2 to simulate the movement of the melt formed upon melting of fuel elements are presented. The system of mass, energy, and momentum conservation equations used to simulate the movement of melt is presented. Special attention is devoted to methods of numerical approximation of the equations as well as to the solution of problems involving smearing of the solution at the melt boundary. The realized methods of stimulating the motion of melt have been verified on the basis of tests with known analytical solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Usov, A. A. Butov, V. I. Chukhno, et al, “Simulation of the melting of a filament in a fast reactor and solidification of deformed melt with the aid of the SAFR/V1 module of the interval code EVKLID/V2,” At. Energ., 124, No. 3, 123–127 (2018).Google Scholar
  2. 2.
    M. Ishii, W. Chen, and M. A. Grolmes, “Molten clad motion model for fast reactor loss-of-flow accidents,” Nucl. Sci. Eng., 60, No. 4, 435–451 (1976).CrossRefGoogle Scholar
  3. 3.
    G. N. Vlasichev, “Code system for calculating emergency processes with melting of in-vessel materials of a fast reactor,” At. Energ., 76. No. 6, 459–465 (1994).CrossRefGoogle Scholar
  4. 4.
    G. N. Vlasichev, “Numerical simulation of the movement and solidification of fuel melt during a serious accident in a fast reactor,” At. Energ., 90, No. 5, 345–353 (2001).Google Scholar
  5. 5.
    W. Chen, M. Ishii, and M. A. Grolmes, “Parametric study of the molten clad motion based on one dimensional model,” Nucl. Eng. Des., 41, 1–12 (1977).CrossRefGoogle Scholar
  6. 6.
    S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films, Nauka, Novosibirsk (1992).zbMATHGoogle Scholar
  7. 7.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, Drofa, Moscow (2003).zbMATHGoogle Scholar
  8. 8.
    G. N. Vlasichev, “Computational model of the melting of a filament taking account of the movement of the melted cladding in the core of the BN reactor during a beyond design basis accident,” Izv. Vyssh. Uchebn. Zaved. Yad. Energet., No. 3, 21–32 (2001).Google Scholar
  9. 9.
    S. K. Godunov, “Difference method of calculating shockwaves,” Usp. Mat. Nauk, 12, No. 1(73), 176–177 (1957).Google Scholar
  10. 10.
    S. K. Godunov and V. S. Ryaben’kii, Difference Schemes, Nauka, Moscow (1973).Google Scholar
  11. 11.
    H. Huppert, “Flow and instability of a viscous current down a slope,” Nature, 300, 427–429 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    D. Kataoka, “A theoretical study of instabilities at the advancing front of thermally driven coating films,” J. Сol. Interface Sci., No. 192, 350–362 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, et al., “Basic positions, current status of the development and prospects for further development of the next-generation thermohydraulic computational code HYDRA-IBRAE/LM for simulating fast reactor installations,” Teploenergetika, No. 2, 54–64 (2016).Google Scholar
  14. 14.
    E. V. Usov, A. A. Butov, G. A. Dugarov, et al., “System of closing relations for a two fluid model in the code HYDRA-IBRAE/LM/V1 for calculating processes accompanying sodium boiling in power-generating equipment channels,” Teploenergetika, No. 7, 48–55 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. V. Usov
    • 1
  • A. A. Butov
    • 1
  • V. I. Chukhno
    • 1
  • I. A. Klimonov
    • 1
  • I. G. Kudashov
  • V. S. Zhdanov
    • 1
  • N. A. Pribaturin
    • 1
  • N. A. Mosunova
    • 2
  • V. F. Strizhov
    • 2
  1. 1.Novosibirsk Branch, Nuclear Safety Institute, Russian Academy of Sciences (IBRAE RAN)NovosibirskRussia
  2. 2.Nuclear Safety Institute, Russian Academy of Sciences (IBRAE RAN)MoscowRussia

Personalised recommendations