Advertisement

Atomic Energy

, Volume 112, Issue 3, pp 157–165 | Cite as

Molten-salt reactors: new possibilities, problems and solutions

  • V. V. Ignatiev
  • O. S. Feynberg
  • A. V. Zagnitko
  • A. V. Merzlyakov
  • A. I. Surenkov
  • A. V. Panov
  • V. G. Subbotin
  • V. K. Afonichkin
  • V. A. Khokhlov
  • M. V. Kormilitsyn
Article

The possibilities of competitive development of a liquid-salt reactor with a cavity-type core for developing thorium-uranium breeder reactor and for burning transuranium elements from the spent fuel of power reactors are described. Such a reactor is characterized by fuel-cycle flexibility, since it is capable of operating with a wide spectrum of fuel and raw-materials loads without being stopped or structurally altered. Compared with thermal liquid-salt reactors with a graphite moderator, these reactors have deeply negative temperature coefficients of reactivity (–7·10–5°C–1), and the fuel salt is completely processed in 3–4 years. Such a reactor facility can be incorporated into any strategy for the development of nuclear power.

Keywords

Spend Fuel Reactor Facility Transuranium Element Molten Salt Reactor Liquid Bismuth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Program of Development of Molten-Salt Breeder Reactors, Rep. ORNL-5018 (1974).Google Scholar
  2. 2.
    V. M. Novikov, V. V. Ignatiev, V. I. Fedulov, and V. N. Cherednikov, Molten-Salt Reactors: Prospects and Problems, Energoatomizdat, Moscow (1990).Google Scholar
  3. 3.
    V. Ignatiev and O. Feynberg, “Molten salt reactor for TRU transmutation without and with Th–U support,” Trans. ANS, 104,722–723 (2011).Google Scholar
  4. 4.
    E. Merle-Lucotte, S. Delpech, C. Renoult, et al., “Optimizing the burning efficiency and the deployment capacities of the molten salt fast reactor,” in: Proc. Global’09, Paris, France, Sepetmeber 6–11, 2009, pp. 1865–1872.Google Scholar
  5. 5.
    D. Sood, P. Iyer, R. Prasad, et al., “Plutonium trifluoride as a fuel for molten salt reactors: solubility studies,” Nucl. Tech., 27, 411–416 (1975).Google Scholar
  6. 6.
    V. V. Ignatiev, V. G. Subbotin, A. V. Merzlyakov et al., “Experimental study of the physical properties of salt melts containing sodium, lithium and beryllium fluorides,” At. Énerg., 101, No. 5, 364–372 (2006).Google Scholar
  7. 7.
    V. Khokhlov, V. Ignatiev, and V. Afonichkin, “Evaluating physical properties of molten salt reactor fluoride compositions,” J. Fluor. Chem., 130, No. 1, 30–37 (2009).CrossRefGoogle Scholar
  8. 8.
    V. V. Ignatiev, A. I. Surenkov, V. G. Subbotin, et al., “Investigation of the corrosion resistance of nickel-based alloys in fluoride melts,” At. Énerg., 101, No. 4, 278–285 (2006).Google Scholar
  9. 9.
    A. V. Zagnitko and V. V. Ignatiev, “Equilibrium distribution of lanthanum, neodymium and thorium between fluoride salt melts and liquid bismuth,” Zh. Fiz. Khim., 86, No. 4, 1–6 (2012).Google Scholar
  10. 10.
    V. Ignatiev, O. S. Feynberg, V. K. Afonichkin, et al., “Advanced reactor technology options for utilization and transmutation of actinides in molten salt reactors,” in: IAEA TECDOC-1626, IAEA, Vienna (2009), pp. 128–168.Google Scholar
  11. 11.
    V. Afonichkin, A. Bovet, and V. Shishkin, “Salts purification and voltammetric study of the electroreduction of U(IV) to U(III) in molten LiF–ThF4,” J. Nucl. Mater., 419, No. 1–3, 347–352 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. V. Ignatiev
    • 1
  • O. S. Feynberg
    • 1
  • A. V. Zagnitko
    • 1
  • A. V. Merzlyakov
    • 1
  • A. I. Surenkov
    • 1
  • A. V. Panov
    • 2
  • V. G. Subbotin
    • 2
  • V. K. Afonichkin
    • 3
  • V. A. Khokhlov
    • 3
  • M. V. Kormilitsyn
    • 4
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics (RFYaTs – VNIITF)Chelyabinsk OblastRussia
  3. 3.Instittue of High-Temperature ElectrochemistryUrals Branch of the Russian Academy of SciencesEkaterinburgRussia
  4. 4.State Science Center – Research Institute for Atomic Reactors (GNTs NIIAR)DimitrovgradRussia

Personalised recommendations