Atomic Energy

, Volume 109, Issue 3, pp 213–220 | Cite as

Use of the fast and CSM methods for analyzing uncertainties in hydraulic-shock modeling

  • E. Uspuras
  • A. Kaliatka
  • V. Kopustinskas
  • M. Vaisnoras
Scientific and Technical Communications


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wylie, V. Streeter, and L. Suo, Fluid Transients in Systems, Prentice Hall, Englewood Cliffs, New Jersey (1993).Google Scholar
  2. 2.
    A. Saltelli, S. Tarantola, and P.-S. Chan, “A quantitative model-independent method for global sensitivity analysis of model output,” Technometrics, 41, No. 1, 39–56 (1999).CrossRefGoogle Scholar
  3. 3.
    A. Kaliatka, E. Uspuras, and M. Vaisnoras, “Uncertainty and sensitivity analysis of parameters affecting water hammer pressure wave behavior,” Kerntechnik, 71, No. 5–6, 270–278 (2006).Google Scholar
  4. 4.
    A. Kaliatka, E. Uspuras, and M. Vaisnoras, “Benchmarking analysis of water hammer effect using RELAP5 code and development of RBMK-1500 reactor main circulation circuit model,” An. Nucl. Energy, 34, No. 1–2, 1–12 (2007).CrossRefGoogle Scholar
  5. 5.
    H. G. Glaeser, “Uncertainty evaluation of thermal-hydraulic code results,” in: Proc. Int. Meeting on “Best-Estimate” Methods in Nuclear Installation Safety Analysis (BE-2000), Washington DC, USA (2000), p. 20.Google Scholar
  6. 6.
    R. Cukier, C. Fortuin, K. Shuler, et al., “Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory,” J. Chem. Phys., 59, 3873–3878 (1973).CrossRefADSGoogle Scholar
  7. 7.
    I. M. Sobol, “On the evaluating sensitivity of nonlinear mathematical models,” Mat. Model., 2, No. 1, 112–118 (1990).MATHMathSciNetGoogle Scholar
  8. 8.
    A. Saltelli and I. M. Sobol, “Analysis of the sensitivity of nonlinear mathematical models: numerical experiments,” ibid., 7, No. 11, 16–28 (1995).MATHMathSciNetGoogle Scholar
  9. 9.
    I. M. Sobol, “Global sensitivity indicators for studying nonlinear mathematical models,” ibid., 17, No. 9, 43–52 (2005).MATHMathSciNetGoogle Scholar
  10. 10.
    J. Sinclair, Response to the PSACOIN Level S Exercise. PSACOIN Level S Untercomparison, Nuclear Energy Agency, OECD (1993).Google Scholar
  11. 11.
    R. Bolado-Lavin,W. Castaings, and S. Tarantola, “Contribution to the sample mean plot for graphical and numerical sensitivity analysis,” Reliability Eng. Design, 94, No. 6, 1041–1049 (2009).Google Scholar
  12. 12.
    SIMLAB. Version 2.2. User Manual. European Commission Joint Research Center, IPSC, Ispra (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • E. Uspuras
    • 1
  • A. Kaliatka
    • 1
  • V. Kopustinskas
    • 1
  • M. Vaisnoras
    • 1
  1. 1.Lithuania Energy InstituteKaunasLithuania

Personalised recommendations