Atomic Energy

, Volume 109, Issue 3, pp 176–183

Mechanisms of helium porosity formation in vanadium alloys as a function of the chemical composition

  • I. I. Chernov
  • M. S. Staltsov
  • B. A. Kalin
  • O. S. Mezina
  • Kyi Zin Oo
  • V. M. Chernov
Article

Transmission electron microscopy is used to study the effect of doping vanadium with titanium and iron on the formation of helium porosity and gas swelling with ionic embedding of helium at 650°C. It is found that large facetted pores larger than 20 nm form in pure vanadium and vanadium exhibits the largest gas swelling. Doping with any amount of titanium (from 0.1 to 10%) and iron (from 1 to 10%) considerably decreases helium swelling. The titanium concentration has almost no effect on the density of the bubbles. The effect of titanium doping of vanadium on the porosity parameters and swelling is of a nonmonotonic character; in the case of iron doping of vanadium the bubble density increases and the bubble size increases monotonically and swelling occurs with increasing iron concentration. The minimum sizes of the bubbles and swelling are observed in alloy with the maximum titanium content V–10%Ti and the structural alloy V–4%Ti–Cr.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. I. Ivanov and Yu. M. Platov, Radiation Physics of Metals and Its Applications, Nauka, Moscow (2002).Google Scholar
  2. 2.
    A. V. Vatulin, “Low-activated structural materials for nuclear engineering (fuel assemblies of nuclear power facilities),” Vopr. At. Nauki Tekhn. Ser. Materialoved. Nov. Mater., No. 1(62), 26–41 (2004).Google Scholar
  3. 3.
    N. M. Beskorovainyi, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Structural Materials of Nuclear Reactors, Energoatomizdat, Moscow (1995).Google Scholar
  4. 4.
    V. M. Ananin, B. A. Kalin, O. N. Korchagin, et al., “Investigation by the method of internal friction of the interaction of oxygen with titanium and vanadium,” Fiz. Khim. Obrab. Mater., No. 2, 66–70 (2010).Google Scholar
  5. 5.
    Li Mtimti, T. Nagasaka D. Yoelzer, et al., “Biaxial thermal creep of two heats of V4Cr4Ti at 700 and 800°C in a liquid helium environment,” J. Nucl. Mater., 367–370, 788–793 (2007).Google Scholar
  6. 6.
    The Stopping and Ranges of Ions in Materials, edited by J. Zeigler, Yorktown Heights, N. Y. (1977), Vol. 4.Google Scholar
  7. 7.
    S. N. Votinov, I. S. Golovin, and V. P. Kolotushkin, “Problems of the development of advanced materials for fuelelement cladding for fast reactors,” in: Atomic Power Plants of Russia. 60 Years of the Atomic Industry, Kontsern Rosenergoatom, Moscow (2005), pp. 313–335.Google Scholar
  8. 8.
    I. I. Chernov, S. Yu. Binyukova, Tan Sve, and B. A. Kalin, “Temperature dependence of the helium swelling of reactor ferrite-martensite and austhenitic steels,” Persp. Mater., No. 4, 41–49 (2005).Google Scholar
  9. 9.
    T. Muroga, J. Chen, V. M. Chernov, et al., “Review of advances in development of vanadium alloys and MHD insulator coatings,” J. Nucl. Mater., 367–370, 780–787 (2007).CrossRefGoogle Scholar
  10. 10.
    B. A. Kalin, I. I. Chernov, A. N. Kalashnikov, et al., “Effect of alloying on the particulars of helium behavior and development of bubble structure in nickel and vanadium alloys,” At. Énerg., 92, No. 1, 50–56 (2002).CrossRefGoogle Scholar
  11. 11.
    I. I. Chernov, B. A. Kalin, A. N. Kalashnikov, and V. M. Ananin, “Behaviour of ion-implanted helium and structural changes in nickel-base alloys under long-time exposure at elevated temperatures,” J. Nucl. Mater., 307–311, Pt. 1, 362–366 (2002).Google Scholar
  12. 12.
    G. Kolk, A. Veen, and L. Caspers, “The interaction of He with C in α-Fe,” Delft. Progr. Rept. Ser. Phys. and Phys. Eng, 4, No. 1, 19–28 (1979).Google Scholar
  13. 13.
    S. Yu. Binyukova, B. A. Kalin, A. N. Kalashnikov, and I. I. Chernov, “Behavior of helium and development of gas porosity in Fe–C alloys under ion irradiation,” Persp. Mater., No. 4, 50–57 (2002).Google Scholar
  14. 14.
    D. Potter, L. Rehn, P. Okamoto,and H. Wiedersich, “Void swelling and segregation in dilute nickel alloys,” in: Proc. Int. Conf. on Radiation Effects in Breeder Reactor Structural Materials, New York, June 19–23, 1977, pp. 377–385.Google Scholar
  15. 15.
    A. D. Franklin, “Statistical thermodynamics of point defects in crystals,” in: Point Defects in Solids, Vol. 1, edited by J. Crawford Jr. and L. Slifkin, Plenum Press, NY (1972), pp. 1–94.Google Scholar
  16. 16.
    J. Ytterhus and R. Balluffi, “On the annealing of quenched-in vacancies in gold,” Phil. Mag., 11, 707–727 (1965).CrossRefADSGoogle Scholar
  17. 17.
    R. Johnson and W. Wilson, “Defect calculation for FCC and BCC metals,” in: Interatom. Potent, and Simul. Lattice Defects, New York (1972), pp. 301–315.Google Scholar
  18. 18.
    P. J. Wynblatt, “Calculation of the vacancy migration energy in cubic crystals,” J. Phys. Chem. Solids, 29, 215–224 (1968).CrossRefADSGoogle Scholar
  19. 19.
    W. Heugten, F. Berg, L. Caspers, and A.Veen, “Relaxation of lattice atoms around defects in V, α-Fe and Mo,” Delft. Progr. Rept. Ser. Phys. and Phys. Eng., 3, 97–106 (1978).Google Scholar
  20. 20.
    R. Johnson, “Interstitials and vacancies in a iron,” Phys. Rev., 145, No. 2, 423–433 (1966).CrossRefADSGoogle Scholar
  21. 21.
    H. Matsui and D. Gelles, “Large swelling in V–5Fe alloy after irradiation in FFTF,” ANL, 112–128 (1989).Google Scholar
  22. 22.
    I. I. Chernov, A. N, Kalashnikov, V. A. Kalin, and S. Yu. Binyukova, “Gas bubbles evolution peculiarities in ferriticmartensitic and austenitic steels and alloys under helium ion irradiation,” J. Nucl. Mater., 323, Pt. 1, 341–345 (2003).Google Scholar
  23. 23.
    F. A. Garner, M. B. Toloczko, and B. H. Sencer, “Comparison of swelling and irradiation creep behaviour of fcc-austenitic and bcc-ferritic-martennsitic alloys at high neutron exposure,” ibid., 276, 123–142 (2000).Google Scholar
  24. 24.
    I. I. Chernov and B. A. Kalin, Behavior of Helium in the Structural Materials of Nuclear and Thermonuclear Reactors, MIFI, Moscow (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • I. I. Chernov
    • 1
  • M. S. Staltsov
    • 1
  • B. A. Kalin
    • 1
  • O. S. Mezina
    • 1
  • Kyi Zin Oo
    • 1
  • V. M. Chernov
    • 2
  1. 1.National Nuclear Research University – Moscow Engineering-Physics Institute (NIYaU MIFI)MoscowRussia
  2. 2.Bochvar All-Russia Research Institute for Inorganic Materials (VNIINM)MoscowRussia

Personalised recommendations