Atomic Energy

, Volume 99, Issue 2, pp 556–562 | Cite as

Probing of the Interior Layers of the Earth with Self-Sinking Capsules

  • M. I. Ozhovan
  • F. Gibb
  • P. P. Poluektov
  • E. P. Emets


It is shown that self-sinking of a spherical probe in the form of a capsule filled with radionuclides, whose decay heats and melts the rock in its path, deep into the Earth is possible. Information on the formation, structure, and shifts deep in the Earth can be obtained by recording and analyzing acoustic signals from the recrystallization of the rock by the probe. It is shown that such capsules can be placed at a prescribed depth. Self-sinking probes can be used to study the formation of deep layers in the Earth, prospect for minerals, and study underground motions in seismically active regions.


Recrystallization Radionuclide Active Region Deep Layer Acoustic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Anderson, Theory of the Earth, Blackwell Publications, Boston (1989).Google Scholar
  2. 2.
    V. Murphy, W. Westrenen, et al., “Experimental evidence that potassium is a substantial radioactive heat source in planetary cores,” Nature, 423, 163–165 (2003).Google Scholar
  3. 3.
    D. Stevenson, “Mission to Earth's core — a modest proposal,” ibid., pp. 239–240.Google Scholar
  4. 4.
    L. Vocaldo and D. Dobson, “The Earth's deep interior: advances in theory and experiment,” Phil. Trans. R. Soc. London A, 357, 3335–3357 (1999).Google Scholar
  5. 5.
    J. Mitrovica and A. Forte, “New insights obtained from joint investigations for the radial profile of mantle viscosity,” Phys. Chem. Earth, 23, 857–863 (1998).CrossRefGoogle Scholar
  6. 6.
    I. A. Rezanov, Superdeep Drilling, Nauka, Moscow (1981).Google Scholar
  7. 7.
    Kola Superdeep Well, Nedra, Moscow (1984).Google Scholar
  8. 8.
    J. Cohen, L. Schwartz, and H. Tewes, “Economic and environmental evaluation of nuclear waste disposal by underground in situ melting,” Trans. Amer. Nucl. Soc., 18, 194–195 (1974).Google Scholar
  9. 9.
    M. Moallemi and R. Viscanta, “Melting around a migrating heat source,” J. Heat Transfer, 107, 451–458 (1985).CrossRefGoogle Scholar
  10. 10.
    S. Emmerman and D. Turcotte, “Stokes' problem with melting,” Intern. J. Heat Mass Transfer, 26, 1625–1630 (1983).CrossRefGoogle Scholar
  11. 11.
    V. A. Kashcheev, A. S. Nikiforov, P. P. Poluektov, and A. S. Polyakov, “Contribution to the theory of self-burial of high-level wastes,” At. Energ., 73, No.3, 215–221 (1992).Google Scholar
  12. 12.
    A. Byalko, Nuclear Waste Disposal: Geophysical Safety, CRC Press, London (1994).Google Scholar
  13. 13.
    S. Logan, “Deeper geological disposal: a new look at self-burial,” in: Proceedings of Waste Management-99 Conference (1999), p. 10.Google Scholar
  14. 14.
    V. G. Efankin, V. A. Kashcheev, P. P. Poluektov, and A. S. Polyakov, “Laboratory simulation of self-burial of radioactive wastes,” At. Energ., 76, No.2, 161–163 (1994).Google Scholar
  15. 15.
    A. S. Nikiforov, V. V. Kulichenko, and M. I. Zhikharev, Decontamination of Liquid Radioactive Wastes, Energoatomizdat, Moscow (1985).Google Scholar
  16. 16.
    M. I. Ojovan, S. A. Dmitirev, and I. A. Sobolev, “Long-term safe storage and disposal of spent sealed radioactive sources in borehole type repositories,” in: Proceedings of the International Conference on Waste Management-03 (2003), 288, p. 11.Google Scholar
  17. 17.
    L. Ya. Kosachevskii and L. S. Syui, “Contribution to the question of self-burial of radioactive wastes,” Zh. Tekh. Fiz., 69, 123–127 (1999).Google Scholar
  18. 18.
    F. Gibb, “A new scheme for the very deep geological disposal of high-level radioactive wastes,” J. Geol. Soc., 157, 27–36 (2000).CrossRefGoogle Scholar
  19. 19.
    F. Gibb, “High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste?” Waste Management, 19, 207–211 (1999).CrossRefGoogle Scholar
  20. 20.
    F. Gibb and P. Atrill, “Granite recrystallization: the key to the nuclear waste problem?” GSA, 31, 657–660 (2003).Google Scholar
  21. 21.
    K. Taylor and F. Gibb, “Container materials for high-temperature, very-deep borehole disposal of radioactive wastes,” in: Proceedings of the University Research Alliance Conference, Sellafield (2004), p. 5.Google Scholar
  22. 22.
    M. K. Zhekamukhov and Kh. B. Shokarov, “On the mechanism of the appearance of acoustic emission on crystallization and melting of matter,” Inzh.-Fiz. zh., 73, 1064–1079 (2000).Google Scholar
  23. 23.
    A. Rujula, S. Glashow, R. Wilson, and G. Charpak, “Neutrino exploration of the Earth,” Physical Rep., 99, 341–396 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. I. Ozhovan
    • 1
  • F. Gibb
    • 1
  • P. P. Poluektov
    • 2
  • E. P. Emets
    • 2
  1. 1.Sheffield UniversityGreat Britain
  2. 2.A. A. Bochvar All-Russia Scientific-Research Institute of Standardization in Machine EngineeringRussia

Personalised recommendations