Advertisement

Astrophysics

, Volume 62, Issue 4, pp 540–555 | Cite as

Temperature of Dust in Hot Plasmas

  • S. A. DrozdovEmail author
  • Yu. A. Shchekinov
Article
  • 3 Downloads

The thermal regime and emission characteristics of dust in hot plasmas (T=10 6 -10 7 K) in outer space are studied. These plasmas are encountered everywhere in the galactic interstellar medium, as well as in circumgalactic and intergalactic space. Despite the hostile environment, dust particles can survive in them for a limited time, ~0.3n -1 million years, where n is the plasma density, and can be studied in the infrared. This provides an additional possibility for diagnostics of the hot plasma. The distinctive feature of the thermal regime of dust particles imbedded in a rarefied hot plasma is that they experience temperature fluctuations over a wide range. The temperature distribution function depends on the radius of the dust grains and on the plasma parameters. Here the temperature distribution functions for dust particles with radii from 30-3000 Å and an array of plasma parameters are described, along with the resulting emission spectra. It is shown that over a wide range of plasma temperatures and densities, the dust emission spectrum has a “bimodal” shape (with two peaks) that could resemble the spectrum of a dust population with two temperatures. Possible errors in determining the mass of dust from observations of its thermal emission based on the assumption that it has an “equilibrium” temperature are discussed.

Keywords

hot gas interstellar intergalactic supernovae interstellar dust dust emission spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Indebetouw, et al., Astrophys. J. Lett. 782, L2 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    N. Rangwala, P. R. Maloney, J. Glenn, et al., Astrophys. J. 743, 94 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    E. da Cunha, F. Walter, I. R. Smail, et al., Astrophys. J. 806, 110 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    L. Fan, Y. Han, R. Nikutta, et al., Astrophys. J. 823, 107 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. Shchekinov and E. Vasiliev, Astrophysics 60, 449 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    Planck collaboration: A. Abergel, P. A. R. Ade, N. Aghanim, et al., Astron. Astrophys. 571, A11 (2014).CrossRefGoogle Scholar
  7. 7.
    Yu. Shchekinov, Galaxies 6, 62 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    E. O. Vasiliev, B. B. Nath, and Yu. A. Shchekinov, Mon. Not. Roy. Astron. Soc. 446, 1703 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    M. Li, J. P. Ostriker, R. Cen, et al., Astrophys. J. 814, 4 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    J. Tumlinson, M. S. Peeples, and J. K. Werk, Ann. Rev. Astron. Astrophys. 55, 389 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    B. Ménard, R. Scranton, M. Fukugita, et al., Mon. Not. Roy. Astron. Soc. 405, 1025 (2010).ADSGoogle Scholar
  12. 12.
    K. Yamada and T. Kitayama, Publ. Astron. Soc. Japan, 57, 611 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Greenberg, in: B. M. Middlehurst and L. H. Aller, ed., Stars and Stellar Systems, Univ. of Chicago Press 7, 221 (1968).Google Scholar
  14. 14.
    B. T. Draine and N. Anderson, Astrophys. J. 292, 494 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    E. Dwek, Astrophys. J. 607, 848 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    E. Dwek, Astrophys. J. 302, 363 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    E. Dwek and R. G. Arendt, Ann. Rev. Astron. Astrophys. 30, 11 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    P. Guhathakurta and B. T. Draine, Astrophys. J. 345, 230 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    M. Bocchio, A. P. Jones, L. Verstraete, et al., Astron. Astrophys. 556, A6 (2013).CrossRefGoogle Scholar
  20. 20.
    E. Dwek and M. W. Werner, Astrophys. J. 248, 138 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    S. Drozdov, Bulletin of the Lebedev Physical Institute, in press (2019).Google Scholar
  22. 22.
    E. Krügel, The Physics of Interstellar Dust, IoP Publishing, Bristol and Philadelphia (2003).CrossRefGoogle Scholar
  23. 23.
    J. I. Davies, S. Bianchi, L. Cortese, et al., Mon. Not. Roy. Astron. Soc. 419, 3505 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    C. Fuller, J. I. Davies, M. W. L. Smith, et al., Mon. Not. Roy. Astron. Soc. 458, 582 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    S. Eales, M. W. L. Smith, R. Auld, et al., Astrophys. J. 761, 168 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    M. Compiègne, L. Verstraete, A. Jones, et al., Astron. Astrophys. 525, A103 (2011).CrossRefGoogle Scholar
  28. 28.
    T. Temim and E. Dwek, Astrophys. J. 774, 8 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    P. Camps, K. Musselt, S. Bianchi, et al., Astron. Astrophys. 580, A87 (2015).CrossRefGoogle Scholar
  30. 30.
    R. H. Hildebrand, Quater. J. R. A. S. 24, 267 (1983).ADSGoogle Scholar
  31. 31.
    G. Helou, IAU Symp. 135, 285 (1980).ADSGoogle Scholar
  32. 32.
    B. T. Draine, Astrophys. J. 245, 880 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    B. T. Draine, Physics of the Interstellar and Intergalactic Medium, Princeton University Press, Princeton and Oxford (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P. N. Lebedev Institute of PhysicsMoscowRussia

Personalised recommendations