Advertisement

Astrophysics

pp 1–13 | Cite as

Exact Stationary Solutions to a General Form of the Kompaneets Equation

  • M. A. DariescuEmail author
  • C. Dariescu
  • G. Amanoloaei
Article
  • 2 Downloads

In the present work, we propose a method to build solutions to a general form of the stationary Kompaneets equation. In the nonrelativistic regime, special attention is given to cases where the solutions are expressed in terms of Heun functions. A comparison with the results obtained within a numerical analysis is also briefly discussed.

Keywords

Kompaneets equation: Comptonization processes: Heun functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Kompaneets, Soviet Phys. JETP, 4, 730, 1957.Google Scholar
  2. 2.
    R. A. Sunyaev and Y. B. Zeldovich, Comments Astrophys. Space Phys., 2, 66, 1970.Google Scholar
  3. 3.
    R. A. Sunyaev and Y. B. Zeldovich, Comments Astrophys. Space Phys., 4, 173, 1972.Google Scholar
  4. 4.
    E. Komatsu and U. Seljak, Mon. Not. Roy. Astron. Soc., 336, 1256, 2002.ADSCrossRefGoogle Scholar
  5. 5.
    B. Horowitz and U. Seljak, Mon. Not. Roy. Astron. Soc., 469, 394, 2017.ADSCrossRefGoogle Scholar
  6. 6.
    Planck Collaboration (P.A.R.Ade et al.), Astron. Astrophys., 594, A24, 2016.Google Scholar
  7. 7.
    E. L. Wright, Astrophys. J., 232, 348, 1979.ADSCrossRefGoogle Scholar
  8. 8.
    Y. Rephaeli, Astrophys. J., 445, 33, 1995.ADSCrossRefGoogle Scholar
  9. 9.
    A. Challinor and A. Lasenby, Astrophys. J., 499, 1, 1998.ADSCrossRefGoogle Scholar
  10. 10.
    N. Itoh, Y. Kohyama, and S. Nozawa, Astrophys. J., 502, 7, 1998.ADSCrossRefGoogle Scholar
  11. 11.
    R. C. Duncan and C. Thompson, Astrophys. J., 392, L9, 1992.ADSCrossRefGoogle Scholar
  12. 12.
    H. Tong et al., Res. Astron. Astrophys., 10, 553, 2010.ADSCrossRefGoogle Scholar
  13. 13.
    A. E. Dubinov, Tech. Phys. Lett., 35, 260, 2009.ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Dariescu, D. Mihu, and C. Dariescu, Rom. Journ. Phys., 59, 224, 2014.Google Scholar
  15. 15.
    K. Heun, Math. Ann., 33, 161, 1889.Google Scholar
  16. 16.
    A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995.Google Scholar
  17. 17.
    S. Y. Slavyanov, W. Lay, Special Functions, A Unified Theory Based on Singularities, Oxford Mathematical Monographs, Oxford, 2000.Google Scholar
  18. 18.
    M. Hortacsu, Adv. High Energy Phys., 2018, 8621573, 2018.Google Scholar
  19. 19.
    H. S. Vieira and V. B. Bezerra, Annals Phys., 373, 28, 2016.ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Ishkhanyan, T. A. Shahverdyan, and T. A. Ishkhanyan, Eur. Phys. J. D, 69, 10, 2015.Google Scholar
  21. 21.
    P. Fiziev, Class. Quant. Grav., 27, 135001, 2010.Google Scholar
  22. 22.
    R. R. Ross, R. Weaver, and R. McCray, Astrophys. J., 219, 292, 1978.ADSCrossRefGoogle Scholar
  23. 23.
    X. Zhang and X. Chen, e-Print: arXiv:1509.00140 [astro-ph].Google Scholar
  24. 24.
    S. A. Grebenev and R. A. Sunyaev, Soviet Astron. Lett., 13, 438, 1987.ADSGoogle Scholar
  25. 25.
    D. B. Liu et al., Astron. Astrophys., 417, 381, 2004.ADSCrossRefGoogle Scholar
  26. 26.
    A. E. Dubinov and I. N. Kitayev, Astrophysics, 57, 401, 2014.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsAlexandru Ioan Cuza University of IasIas, iRomania

Personalised recommendations