Advertisement

Astrophysics

, Volume 62, Issue 3, pp 338–359 | Cite as

Three Nearby K-Giants with Planets: Accurate Determination of Basic Parameters, Including an Analysis of Metallicity Based on Fe I Lines

  • L. S. LyubimkovEmail author
  • D. V. Petrov
  • D. B. Poklad
Article
  • 2 Downloads

Fundamental parameters, including the effective temperature Teff, surface gravity logg, mass M, luminosity L, radius R, and age t, are determined for three bright, nearby K-giants, β Gem (K0 III), μ Leo (K2 III), and α Tau (K5 III), It is notable that around all three stars the giant planets have been found. Our results are compared with published high-precision data for benchmark stars included in the Gaia project. Very good agreement was obtained for all three giants with these data for the basic parameters Teff, logg, and M, although our technique of their determination was simpler. Special attention was devoted to analysis of the Fe I lines which are the basis of a simultaneous determination of the metallicity index [Fe/H] and microturbulent parameter Vt. The equivalent widths W of the Fe I lines are automatically measured from published spectra for the benchmark stars. An analysis of Fe I lines from the list of “golden lines” selected in a study of benchmark stars led to the conclusion that the excitation potential El of the low level of the lines plays an substantial role in determining [Fe/H] and Vt. It is shown that in the case of the early K-giants β Gem and μ Leo with temperatures Teff between 4400 and 4900 K for lines in the range of W from 100 to 300 mÅ there is a dependence of the [Fe/H] and Vt values on El. This dependence was not taken into account earlier is studies of the K-giants, in particular in the Fe I lines analysis of the benchmark stars. It is shown that a correct accounting for it leads an ambiguity in the determination of [Fe/H] and Vt for β Gem and μ Leo. In the case of the coolest K-giant α Tau (Aldebaran) with a temperature Teff = 3920K, this effect seems to be less pronounced. Recommendations are given for the Fe I lines selection for [Fe/H] and Vt determination. It is sonfirmed for the example of the three stars studied here that the non-LTE effects in the Fe I lines for the K-giants with normal metallicity are very minor, so they cannot be the reason of the revealed ambiguity in [Fe/H] and Vt. values. The low ratios of the carbon 12C/13C and oxygen 16O/17O isotopes confirm that all three giants passed the phase of deep convective mixing.

Keywords

red giants basic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Cunha, P. M. Frinchaboy, D. Souto, et al., Astron. Nachr. 337, 922 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    L. S. Lyubimkov, Astrophysics 59, 411 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    L. S. Lyubimkov, Astrophysics 61, 262 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Popkov and S. B. Popov, Izv.Krym.Astrofiz.Obs.114, 70 (2018).Google Scholar
  5. 5.
    M. Asplund, N. Grevesse, A. J. Sauval, et al., Ann. Rev. Astron. Astrophys.47, 481 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    P. Jofré, U. Heiter, C. Soubiran, et al., Astron. Astrophys. 564, A133 (2014).CrossRefGoogle Scholar
  7. 7.
    U. Heiter, P. Jofré, B. Gustafsson, et al., Astron. Astrophys. 582, A49 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Jofré, U. Heiter, C. Soubiran, et al., Astron. Astrophys. 582, A81 (2015).CrossRefGoogle Scholar
  9. 9.
    A. Massarotti, D. W. Latham, R. P. Stefanik, et al., Astron. J.135, 209 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    F. van Leeuwen, Hipparcos, the New Reduction of the Raw Data., Springer, Dordrecht (2007).Google Scholar
  11. 11.
    I. Han, B. C. Lee, K. M. Kim, et al., J. Korean Astron. Soc.41, 59 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    B. C. Lee, I. Han, M. G. Park, et al., Astron. Astrophys. 566, A67 (2014).CrossRefGoogle Scholar
  13. 13.
    A. P. Hatzes, W. D. Cochran, M. Endl, et al., Astron. Astrophys. 580, A31 (2015).CrossRefGoogle Scholar
  14. 14.
    L. S. Lyubimkov and D. B. Poklad, Kinem. Phys. Celest. Bodies, 30, 244 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    I. Ramírez andC. A. Prieto, Astrophys. J.743, 135 (2011).Google Scholar
  16. 16.
    R. E. Luck, Astron. J. 150, 88 (2015).Google Scholar
  17. 17.
    A. McWilliam, Astrophys. J. Suppl.74, 1075 (1990).ADSCrossRefGoogle Scholar
  18. 18.
    L. S. Lyubimkov, T. M. Rachkovskaya, and D. B. Poklad, Astrophysics 52, 217 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    L. S. Lyubimkov, D. L. Lambert, S. I. Rostopchin, et al., Mon. Not.Roy. Astron. Soc, 402, 1369 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Claret, Astron. Astrophys. 424, 919 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    A. Claret, Astron. Astrophys. 453, 769 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    G. Bertelli, L. Girardi, P. Marigo, et al., Astron. Astrophys. 484, 815 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    G. Bertelli, E. Nasi, L. Girardi, et al., Astron. Astrophys. 508, 355 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S. K. Yi, Y.-C. Kim, and P. Demarque, Astrophys. J. Suppl. 144, 259 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    P. Demarque, J.-H. Woo, Y.-C. Kim, et al.,Astrophys. J. Suppl. 155, 667 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    S. Blanco-Cuaresma, C. Soubiran, P. Jofre, et al., Astron. Astrophys. 566, A98 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    S. G. Sousa, N. C. Santos, G. Israelian, et al., Astron. Astrophys. 469, 783 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    W. Kang and S.-G. Lee, Mon. Not. Roy. Astron. Soc. 425, 3162 (2012).Google Scholar
  29. 29.
    L. I. Mashonkina, T. M. Sitnova, and Yu. V. Pakhomov,Pis’ma v Astron. zh. 42, 667 (2016).Google Scholar
  30. 30.
    T. Ryabchikova, N. Piskunov, R. L. Kurucz, et al., Physica Scripta 90, 054005 (2015).Google Scholar
  31. 31.
    N. Piskunov and J. A. Valenti, Astron. Astrophys. 597, A16 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    R. Kurucz, Mem. Soc. Astron. Italiana 75, 1 (2004).Google Scholar
  33. 33.
    Sz. Mészáros, C. A. Prieto, B. Edvardsson, et al., Astron. J. 144, 120 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. J. Harris, D. L. Lambert, andV. V. Smith, Astrophys. J. 325, 768 (1988).ADSCrossRefGoogle Scholar
  35. 35.
    M. J. Harris, D. L. Lambert, andV. V. Smith, Publ. Astron. Soc. Pacif.99, 1003 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    C. Abia, S. Palmerini, M. Busso, et al., Astron. Astrophys. 548, A55 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    L. S. Lyubimkov, D. L. Lambert, S. A. Korotin, et al., Mon. Not.Roy. Astron. Soc. 446, 3447 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    L. S. Lyubimkov, Astrophysics 59, 472 (2016).Google Scholar
  39. 39.
    C. Georgy, S. Ekström, A. Granada, et al., Astron. Astrophys. 553, A24 (2013).CrossRefGoogle Scholar
  40. 40.
    A. Collet, A. Nordlund, M. Asplund, et al., Mon. Not.Roy. Astron. Soc. 475, 3369 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. S. Lyubimkov
    • 1
    Email author
  • D. V. Petrov
    • 1
  • D. B. Poklad
    • 1
  1. 1.Crimean Astrophysical Observatory, RANMoscowRussia

Personalised recommendations