Advertisement

Astrophysics

, Volume 62, Issue 3, pp 300–312 | Cite as

X-Ray Warm Absorber Variability of the Seyfert Galaxy Arakelian 564

  • B. Korany
  • M. I. NouhEmail author
Article
  • 4 Downloads

We studied the variability of warm absorber clouds of ionized gas within AGN for the Seyfert 1 galaxy Arakelian 564. The X-ray spectra for four XMM-Newton observations of this object are analyzed using the EPIC and the RGS instruments. These four observations covered 11 years. The ionization parameter ξ of the absorbing matter changed between observations ( logξ = 0.889 ± 3.1 × 10-2 for the 2000 observation and 0.437 ± 7.60 × 10-2 for the year 2001). The X-ray soft excess is studied for the four observations using two black body parameters in EPIC spectra (the first black-body temperature is 3 0.129 ± 2.0 × 10-2 KeV and the second is 2 1.74 ± 7.6 × 10-2 KeV) and one black body parameter in RGS spectra.

Keywords

galaxies AGN X-rays warm absorber Arakelian 564 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Halpern, Astrophys. J., 281, 90, 1984.ADSCrossRefGoogle Scholar
  2. 2.
    T. P. Adhikari, A. Rózańska, M. Sobolewska et al., Astrophys. J., 815, 83, 2015.ADSCrossRefGoogle Scholar
  3. 3.
    J. H. Krolik and G. A. Kriss, Astrophys. J., 561, 684, 2001.ADSCrossRefGoogle Scholar
  4. 4.
    G. Matt, M. Bianchi, M. Huainazzi et al., Astron. Astrophys., 533, A1-A9, 2011.CrossRefGoogle Scholar
  5. 5.
    M. A. Arakelyan, Soobshch. Byurakansk. Obs., 47, 3, 1975.ADSGoogle Scholar
  6. 6.
    M. A. Arakelyan, É. A. Dibai, and V. F. Esipov, Astrophysics, 12, 456, 1976.ADSCrossRefGoogle Scholar
  7. 7.
    W. Brinkmann, I. E. Papadakis, andC. Raeth, Astron. Astrophys., 465, 107, 2007.ADSCrossRefGoogle Scholar
  8. 8.
    S. Khanna, J. S. Kaastra, and M. Mehdipour, Astron. Astrophys., 586, A2, 2016.ADSCrossRefGoogle Scholar
  9. 9.
    E. Kara, J. A. Garca, A. Lohfink et al., Mon. Not. Roy. Astron. Soc., 468, 3489, 2017.ADSCrossRefGoogle Scholar
  10. 10.
    M. J. L. Turner, A. Abbey, and M. Arnaud, Astron. Astrophys., 365, L27-L35, 2001.ADSCrossRefGoogle Scholar
  11. 11.
    L. Struder, U. Briel, K. Dennerl et al., Astron. Astrophys., 365, L18-L26, 2001.ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Hassan, B. Korany, R. Misra et al., Astrophys. J. Suppl. Ser., 339, 355, 2012.Google Scholar
  13. 13.
    G. C. Dewangan, R. E. Griffiths, S. Dasgupta et al., Astron. J., 671, 1284, 2007.ADSCrossRefGoogle Scholar
  14. 14.
    I. E. Papadakis, W. Brinkmann, M. J. Page et al., Astron. Astrophys., 461, 931, 2007.ADSCrossRefGoogle Scholar
  15. 15.
    W. N. Brandt, A. C. Fabian, K. Nandra et al., Mon. Not. Roy. Astron. Soc., 271, 958, 1994.ADSCrossRefGoogle Scholar
  16. 16.
    S. Laha, G. C. Dewangan, and A. K. Kembhavi, Astrophys. J., 734, 75, 2011.ADSCrossRefGoogle Scholar
  17. 17.
    C. B. Tarter, W. H. Tucker, and E. E. Salpeter, Astrophys. J., 156, 943, 1969.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AstronomyNational Research Institute of Astronomy and Geophysics (NRIAG)HelwanEgypt
  2. 2.Department of Physics, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahSaudi Arabia

Personalised recommendations