Advertisement

Dwarf Spheroidal Galaxies in the M101 Group and Behind it

  • I. D. KarachentsevEmail author
  • L. N. Makarova
Article

We use images from the Hubble Space Telescope to determine the distances to a dozen objects with low surface brightness recently observed around the bright nearby spiral M101. Only two dwarf galaxies, M101-DwA and M101-Dw9, turn out to be actual satellites of M101 at distances of about 7 Mpc. The other objects are probably members of a distant group around the S0-galaxies NGC5485/5473. Based on the radial velocities and projected separations of the 9 satellites, we obtain an estimate of (8.5 ± 3.0) 1011M for the total mass of M101, which is consistent with a ratio 16±6 for the total mass to the stellar mass of the galaxy.

Keywords

galaxies dwarf galaxies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. D. Karachentsev and V. E. Karachentseva, Mon. Not. Roy. Astron. Soc. 486, 3697 (2019).ADSCrossRefGoogle Scholar
  2. 2.
    R. Rekola, H. Jerjen, and C. Flynn, Astron. Astrophys. 437, 823 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    I. D. Karachentsev, P. Riepe, T. Zilch, et al., Astrophys. Bull. 70, 379 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    A. Merritt, P. van Dokkum, and R. Abraham, Astrophys. J. Lett. 787, L37 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    P. Bennet, D. J. Sand, D. Crnojevich, et al., Astrophys. J. 850, 109 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    O. Mueller, R. Scalera, B. Binggeli, et al., Astron. Astrophys. 602, A119 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    S. Danieli, P. van Dokkum, A. Merritt, et al., Astrophys. J. 837, 136 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. Merritt, P. van Dokkum, S. Danieli, et al., Astrophys. J. 833, 168 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. Carlsten, R. L. Beaton, J. P. Greco, et al., arXiv:1901. 07578 (2019).Google Scholar
  10. 10.
    A. Dolphin, Publ. Astron. Soc. Pacif. 112, 1383 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    D. Makarov, L. Makarova, L. Rizzi, et al., Astron. J. 132, 2729 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    L. Rizzi, R. B. Tully, D. I. Makarov, et al., Astrophys. J. 661, 813 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661 (1977).ADSGoogle Scholar
  15. 15.
    N. A. Tikhonov, V. S. Lebedev, and O. A. Galazutdinova, Astron. Lett. 41, 239 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    J. C. Mihos, K. Keating, K. Holley-Bockelmann, et al., Astrophys. J. 761, 186 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    R. B. Tully, H. M. Courtois, and J. G. Sorce, Astron. J. 152, 50 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    O. G. Kashibadze and I. D. Karachentsev, Astron. Astrophys. 609A, 11 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    I. D. Karachentsev and Y. N. Kudrya, Astron. J. 148, 50 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    D. I. Makarov and I. D. Karachentsev, Mon. Not. Roy. Astron. Soc. 412, 2498 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Special Astrophysical ObservatoryRussian Academy of SciencesMoscowRussia

Personalised recommendations