Astrophysics

, Volume 61, Issue 1, pp 134–143 | Cite as

LRS Bianchi Type-I Bulk Viscous Cosmological Models in f(R, T) Gravity

Article
  • 5 Downloads

We have studied the locally rotationally symmetric (LRS) Bianchi type-I cosmological model in f (R, T) gravity (R is the Ricci scalar and T is the trace of the stress energy tensor) with bulk viscous fluid as matter content. The model is constructed for the linear form f (R, T) = R + 2f (T). The exact solution of the field equations is obtained by using a time varying deceleration parameter q for a suitable choice of the function f (T). In this case, the bulk viscous pressure \( \overline{\mathrm{p}} \) is found to be negative and the energy density ρ is found to be positive. The obtained model is anisotropic, accelerating, and compatible with the results of astronomical observations. Also, some important features of physical parameters of this model have been discussed.

Keywords

Bianchi universe bulk viscous fluid deceleration parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Garnavich et al., Astrophys. J., 493, L53, 1998.ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Riess et al., Astron. J., 116, 1009, 1998.ADSCrossRefGoogle Scholar
  3. 3.
    S. Perlmutter et al., Astrophys. J., 517, 565, 1999.ADSCrossRefGoogle Scholar
  4. 4.
    S. Perlmutter et al., Astrophys. J., 483, 565, 1997.ADSCrossRefGoogle Scholar
  5. 5.
    C. L. Bennett et al., Astrophys. J. Suppl. Ser., 148, 1, 2003.ADSCrossRefGoogle Scholar
  6. 6.
    D. N. Spergel et al., Astrophys. J. Suppl., 148, 175, 2003.ADSCrossRefGoogle Scholar
  7. 7.
    D. N.Spergel et al., Astrophys. J. Suppl., 170, 377, 2007.ADSCrossRefGoogle Scholar
  8. 8.
    T. Padmanabhan, Phys. Rept., 380, 235, 2003.ADSCrossRefGoogle Scholar
  9. 9.
    M. U. Farooq et al., Astrophys. Space Sci., 334(2), 243, 2011.ADSCrossRefGoogle Scholar
  10. 10.
    J. Martin, Mod. Phys. Lett. A, 23, 1252, 2008.Google Scholar
  11. 11.
    S. Nojiri, and S. D. Odintsov, Phys. Lett. B, 562, 147, 2003.ADSCrossRefGoogle Scholar
  12. 12.
    M .Jamil, I. Hussain, and D. Momeni, Eur. Phys. J. Plus, 126, 80, 2011.Google Scholar
  13. 13.
    T. Chilba et al., Phys. Rev. D, 62, 023511, 2000.ADSCrossRefGoogle Scholar
  14. 14.
    T. Padmanabhan and T. R. Chudhary, Phys. Rev. D, 66, 081301, 2002.ADSCrossRefGoogle Scholar
  15. 15.
    M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D, 66, 043507, 2002.ADSCrossRefGoogle Scholar
  16. 16.
    R. C. Gupta and A. Pradhan, Int. J. Theor. Phys., 49(4), 821, 2010.CrossRefGoogle Scholar
  17. 17.
    S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D, 70, 043528, 2004.ADSCrossRefGoogle Scholar
  18. 18.
    S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys., 4(1), 115, 2007.MathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Bertolami et al., Phys. Rev. D, 75, 104016, 2007.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G. R. Bengochea and R. Ferraro, Phys. Rev. D, 79, 124019, 2009.ADSCrossRefGoogle Scholar
  21. 21.
    E. V. Linder, Phys. Rev. D, 81, 127301, 2010.ADSCrossRefGoogle Scholar
  22. 22.
    K. Bamba, C. Q. Geng, S. Nojiri et al., Euro Phys. Lett., 89(5), 50003, 2010.Google Scholar
  23. 23.
    K. Bamba, S. D. Odintsov, L. Sebastiani et al., Eur. Phys. J.C., 67(1), 295, 2010.ADSCrossRefGoogle Scholar
  24. 24.
    M. E. Rodrigues, M. J. S.Houndjo, D. Mommeni et al., Can J. Phys., 92(2), 173, 2014.Google Scholar
  25. 25.
    T. Harko, F. S. N. Lobo, S. Nojiri et al., Phys. Rev. D, 84, 024020, 2011.ADSCrossRefGoogle Scholar
  26. 26.
    G. L. Murphy, Big-Bang Model Without Singularities, Phys. Rev. D, 8, 4231, 1973.ADSCrossRefGoogle Scholar
  27. 27.
    M. Lachieze-Rey and J. P. Luminet, Cosmic Topology, Phys. Reports, 254, 135, 1995.ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. A. Belinskii and I. M. Khalatnikov, Influence of viscosity on the character of cosmological evolution, Sov. Phys. JETP, 42, 205, 1975.ADSGoogle Scholar
  29. 29.
    K. L. Mahanta, Astro. Space Sci., 353, 683, 2014.ADSCrossRefGoogle Scholar
  30. 30.
    C. P. Singh and V. Singh, Gen. Rel. Grav., 46, 1696, 2014.ADSCrossRefGoogle Scholar
  31. 31.
    P. K. Sahoo and M. Sivakumar, Astrophys. Space Sci., 357, 60, 2015.ADSCrossRefGoogle Scholar
  32. 32.
    P. K. Sahoo, Parbati Sahoo, and B. K. Bishi, Int. J. Geom. Methods Mod. Phys., 14, 1750097, 2017.MathSciNetCrossRefGoogle Scholar
  33. 33.
    P. K. Sahoo, Acta Physica Polonica B Proceeding Supplement, 10, 369, 2017.ADSCrossRefGoogle Scholar
  34. 34.
    M. S. Berman, A special law of variation for Hubbles parameter, Nuovo Cimento B, 74, 182186, 1983.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Birla Institute of Technology and Science-PilaniHyderabadIndia

Personalised recommendations