, Volume 58, Issue 2, pp 296–307 | Cite as

Effect of Mass Variation on the Radial Oscillations of Differentially Rotating and Tidally Distorted Polytropic Stars

  • Seema Saini
  • Sunil Kumar
  • A. K. Lal

A method is proposed to compute the eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of differentially rotating and tidally distorted stellar models by taking into account the effect of mass variations on its equipotential surface inside the stars. The developed approach has been used to compute certain radial modes of oscillations of polytropic models with polytropic indices 1.5, 3.0 and 4.0. The results obtained have been compared with results obtained earlier without taking into account the mass variation. Certain conclusions based on this study have been drawn.


Mass variation equipotential surface rotation and tidal distortions polytropic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Clement, Astrophys. J., 141, 210, 1965.MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. K. Kochar and S. K. Trehan, Astrophys. Space Sci., 26, 271, 1974.ADSCrossRefGoogle Scholar
  3. 3.
    C. Mohan and R. M. Saxena, Astrophys. Space Sci., 113, 155, 1985.ADSCrossRefGoogle Scholar
  4. 4.
    F. Soofi, M. J. Goupil, and W. A. Dziembowski, Astron. Astrophys., 334, 911, 1998.ADSGoogle Scholar
  5. 5.
    B. Dintrans and M. Rieutord, Astron. Astrophys., 354, 86, 2000.ADSGoogle Scholar
  6. 6.
    D. Reese, F. Lignieres, and M. Rieutord, Astron. Astrophys., 455, 621, 2006.ADSCrossRefGoogle Scholar
  7. 7.
    C. C. Lovekin and R. G. Deupre, Astrophys. J., 679, 199, 2008.Google Scholar
  8. 8.
    J. G. Ireland, Z. Astrophys., 65, 123, 1967.ADSGoogle Scholar
  9. 9.
    M. F. Woodard, Astrophys. J., 347, 1176, 1989.ADSCrossRefGoogle Scholar
  10. 10.
    W. A. Dziembowski and P. R. Goode, Astrophys. J., 394, 670, 1992.ADSCrossRefGoogle Scholar
  11. 11.
    C. Mohan, A. K. Lal, and V. P. Singh, Indian J. Pure Appl. Math., 29, 199, 1998.MATHGoogle Scholar
  12. 12.
    C. Mohan, A. K. Lal, and V. P. Singh, Astrophys. Space Sci., 193, 69, 1992.ADSCrossRefGoogle Scholar
  13. 13.
    A. K. Lal, C. Mohan and V. P. Singh, Indian J. Pure Appl. Math., 32, 1576, 2001.Google Scholar
  14. 14.
    S. Karino and Y. Eriguchi, Astrophys. J., 592, 1199, 2003.ADSGoogle Scholar
  15. 15.
    C. C. Lovekin, R. G. Deupree, and M. J. Clement, Astrophys. J., 693, 677, 2009.ADSCrossRefGoogle Scholar
  16. 16.
    S. Kumar, A. K. Lal, and Seema Saini, Astrophysics, 58, 120, 2015.ADSCrossRefGoogle Scholar
  17. 17.
    A. K. Lal, A. Pathania, and C. Mohan, Proc. R. Soc. London, A, doi: 10.1098/rspa.2011.0182, published online 2012, Nov 3.
  18. 18.
    S. Saini, A. K. Lal, and S. Kumar, Astrophysics, 57, 119, 2014.ADSCrossRefGoogle Scholar
  19. 19.
    S. Kumar, A. K. Lal, V. P. Singh, and S. Saini, World J. Model. and Simul., 7, 206, 2011.Google Scholar
  20. 20.
    C. Mohan, R. M. Saxena, and S. R. Agarwal, Astrophys. Space Sci., 178, 89, 1991.ADSCrossRefGoogle Scholar
  21. 21.
    S. Kumar, A. K. Lal, V. P. Singh, and H. G. Sharma, Int. J. Appl. Phys., 1, 69, 2011.Google Scholar
  22. 22.
    R. Kippenhahn and H. C. Thomas, A simple method for the solution of stellar structure equations including rotation and tidal forces, Stellar Rotation, ed. A.Slettebak, D.Reidel, Dordrecht, Holland, 20-29, 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsGraphic Era UniversityUttarakhandIndia
  2. 2.Department of MathematicsStallion College for Engineering and TechnologySaharanpurIndia
  3. 3.Department of Mathematics and Computer ApplicationsThapar UniversityPunjabIndia

Personalised recommendations