, Volume 58, Issue 1, pp 120–130 | Cite as

Vibrational Stability of Differentially Rotating Polytropic Stars


A method for computing the periods of radial and non-radial modes of oscillations to determine the vibrational stability of differentially rotating polytropic gaseous spheres is presented and incorporated with averaging techniques of Kippenhahn and Thomas. The concepts of Roche-equipotential have also been used for obtaining the distorted structure of different stellar models. Numerical results based on this study are presented to explain the effect of differential rotation on the oscillations and stability of polytropic stars.

Key words

Differential rotation adiabatic and non-adiabatic oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Lal, A. Pathania, A. Bhalla, C. Mohan, J. Phys. A: Math. Theor. (IOP), 42, 485212, 2009.CrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Mohan, R. M. Saxena, Astrophys. Space Sci., 113, 155, 1985.CrossRefADSGoogle Scholar
  3. 3.
    C. Mohan, R. M. Saxena, S. R. Agarwal, Astrophys. Space Sci., 178, 89, 1991.CrossRefADSGoogle Scholar
  4. 4.
    C. Mohan, K. Singh, Astrophys. Space Sci., 77, 493, 1981.CrossRefADSMATHGoogle Scholar
  5. 5.
    P. Ledoux, Th. Walraven, Handbuch der Physik, Springer-Verlag Berlin, 51, 353–604, 1958.Google Scholar
  6. 6.
    M. J. Clement, Astrophys. J., 141, 210, 1965.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    H. Saio, Astrophys. J., 244, 299, 1981.CrossRefADSGoogle Scholar
  8. 8.
    S. Chandrasekhar, V. Ferrari, Proc. R. Soc. London A, 432, 247, 1991.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    B. Dintrans, M. Rieutord, Astron. Astrophys., 354, 86, 2000.ADSGoogle Scholar
  10. 10.
    F. Lignieres, M. Rieutord, D. Reese, Astron. Astrophys., 455, 607, 2006.CrossRefADSGoogle Scholar
  11. 11.
    D. Reese, F. Lignieres, M. Rieutord, Astron. Astrophys., 455, 621, 2006.CrossRefADSGoogle Scholar
  12. 12.
    C. C. Lovekin, R. G. Deupree, Astrophys. J., 679, 1499, 2008.CrossRefADSGoogle Scholar
  13. 13.
    M. F. Woodard, Astrophys. J., 347, 1176, 1989.CrossRefADSGoogle Scholar
  14. 14.
    W. A. Dziembowski, P. R. Goode, Astrophys. J., 394, 670, 1992.CrossRefADSGoogle Scholar
  15. 15.
    V. A. Urpin, D. A. Shalybkov, H. C. Spruit, Astron. Astrophys., 306, 455, 1996.ADSGoogle Scholar
  16. 16.
    C. Mohan, A. K. Lal, V. P. Singh, Indian J. Pure Appl. Math., 29, 199, 1998.MATHGoogle Scholar
  17. 17.
    S. Karino, Y. Eriguchi, Astrophys. J., 592, 1119, 2003.CrossRefADSGoogle Scholar
  18. 18.
    C. C. Lovekin, R. G. Deupree, M. J. Clement, Astrophys. J., 693, 677, 2009.CrossRefADSGoogle Scholar
  19. 19.
    S. Saini, A. K. Lal, S. Kumar, Astrofizika, 57, 129, 2014.Google Scholar
  20. 20.
    R. Kippenhahn, H. C. Thomas, A simple method for the solution of stellar structure equation including rotation and tidal forces. Stellar rotation. ed. A. Slettebak, D. Reidel Publ. Co., Dordrecht, Holland, 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsStallion College of Engineering and TechnologySaharanpur (U.P.)India
  2. 2.S.M.C.AThapar UniversityPatiala (Pb.)India
  3. 3.Department of MathematicsGraphic Era UniversityDehradun (U.K.)India

Personalised recommendations