Astrophysics

, Volume 57, Issue 1, pp 119–129 | Cite as

Equilibrium Structure of Rotationally and Tidally Distorted Prasad Model Including the Effect of Mass Variation Inside the Star

Article

In this paper we propose suitable modifications in the concept of Roche equipotentials to account for the effect of mass distribution inside the star on its equipotential surfaces and use this in conjunction with the approach of Kippenhahn and Thomas, in a manner earlier used by Prasad and Mohan, to incorporate the effects of rotational and tidal forces in the equations of stellar structure parameters. The proposed method has been used to compute the structure parameters of the rotationally and tidally distorted Prasad model of the star.

Key words

Roche equipotentials equilibrium structure of stars Prasad model rotating stars stars in binary systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Prasad, Mon. Not. Roy. Astron. Soc., 109(1), 103, 1949.MATHADSGoogle Scholar
  2. 2.
    H. S. Gurm and Ph. D. Thesis, University of Roorkee, Roorkee, India, 1987.Google Scholar
  3. 3.
    R. Kippenhahn and H. C. Thomas, A simple method for the solution of stellar structure equations including rotation and tidal forces, Stellar Rotation, ed. A. Slettebak, D. Reidel, Dordrecht, Holland, 20-29, 1970.Google Scholar
  4. 4.
    C. Prasad and C. Mohan, Mon. Not. Roy. Astron. Soc., 141, 389, 1968.ADSGoogle Scholar
  5. 5.
    S. R. Agarwal and Ph. D. Thesis, University of Roorkee, Roorkee, India, 1987.Google Scholar
  6. 6.
    M. K. Sharma and Ph. D. Thesis, RoorkeeUniversity, Roorkee, India, 1997.Google Scholar
  7. 7.
    A. K. Lal, S. Saini, C. Mohan, and V. P. Singh, Astrophys. Space Sci., 306, 165, 2006.CrossRefMATHADSGoogle Scholar
  8. 8.
    Z. Kopal, Adv. in Astron. Astrophys., 9, 1-49, 1972.CrossRefADSGoogle Scholar
  9. 9.
    Z. Kopal, Dynamics of Close Binary Systems, D. Reidel, Dordrecht, Boston, London, 1978.CrossRefMATHGoogle Scholar
  10. 10.
    C. Mohan and V. P. Singh, Astrophys. Space Sci., 54, 293, 1978.CrossRefADSGoogle Scholar
  11. 11.
    C. Mohan and V. P. Singh, Astrophys. Space Sci., 56, 109, 1978.CrossRefMATHADSGoogle Scholar
  12. 12.
    C. Mohan and R. M. Saxena, Astrophys. Space Sci., 95, 369, 1983.CrossRefADSGoogle Scholar
  13. 13.
    C. Mohan, R. M. Saxena, and S. R. Agarwal, Astrophys. Space Sci., 163, 23, 1990.CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    C. Mohan, A. K. Lal, and V. P. Singh, Astrophys. Space Sci., 193, 69, 1992.CrossRefADSGoogle Scholar
  15. 15.
    A. K. Lal, S. Saini, C. Mohan, and V. P. Singh, Astrophys. Space Sci., 310, 317, 2007.CrossRefADSGoogle Scholar
  16. 16.
    M. Baur, Astrophys. Space Sci., 296, 255, 2005.CrossRefADSGoogle Scholar
  17. 17.
    C. Mohan, A. K. Lal, and V. P. Singh, Astrophys. Space Sci., 215, 111, 1994.CrossRefADSGoogle Scholar
  18. 18.
    S. Saini, Ph. D. Thesis, Indian Institute of Technology, Roorkee, India, 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsGraphic Era UniversityUttarakhandIndia
  2. 2.Department of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia
  3. 3.Department of MathematicsStallion College for Engineering and TechnologySaharanpurIndia

Personalised recommendations