Advertisement

Astrophysics

, Volume 53, Issue 3, pp 396–408 | Cite as

Inhomogeneities in the spatial distribution of gamma-ray bursts

  • A. A. Raikov
  • V. V. Orlov
  • O. B. Beketov
Article

The distribution of pairwise distances f(l) for different dependences r(z) of the metric distance is used to reveal inhomogeneities in the spatial distribution of 201 long (T 90>2s) gamma-ray bursts with measured redshifts z. For a fractal set with dimensionality D, this function behaves asymptotically as f(l) ∼ l D−1 for small l. Signs of fractal behavior with dimensionality D = 2.2–2.5 show up in all the models considered for the spatial distribution of the gamma-ray bursts. Several spatially distinct groups of gamma-ray bursts are identified. The group with equatorial coordinates ranging from 23h56m to 0h49m and δ from +19° to +23° with redshifts of 0.81–0.94 is examined separately.

Keywords

cosmology large-scale structure fractals gamma-ray bursts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gabrielli, F. Sylos Labini, M. Joyce, and L. Pietronero, Statistical Physics of Cosmic Structures, Springer (2005).Google Scholar
  2. 2.
    V. J. Martinez and E. Saar, arXiv:astro-ph/0209208 (2002).Google Scholar
  3. 3.
    Yu. Baryshev and P. Teerikorpi, arXiv:astro-ph/0505185 (2005).Google Scholar
  4. 4.
    N. L. Vasil’ev, Astrofizika 51, 393 (2008).Google Scholar
  5. 5.
    M. Kendall and P. Moran, Geometric Probabilities [Russian translation], Nauka, Moscow (1972).Google Scholar
  6. 6.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    P. Grassberger and I. Procaccia, Physica D: Nonlinear Phenomena 9, 189 (1983).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    D. W. Hogg, arXiv:astro-ph/9905116v4 (2000).Google Scholar
  9. 9.
    L. M. Lubin and A. Sandage, Astron. J. 122, 1084 (2001).CrossRefADSGoogle Scholar
  10. 10.
    W. H. Sorrell, Astrophys. Space Sci. 323, 205 (2009).CrossRefADSGoogle Scholar
  11. 11.
    M. Lopez-Corredoira, arXiv:astro-ph/1002.0323.Google Scholar
  12. 12.
    P. A. LaViolette, Astrophys. J. 301, 544 (1986).CrossRefADSGoogle Scholar
  13. 13.
    S. E. Woosley and J. S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006).CrossRefADSGoogle Scholar
  14. 14.
    J. R. Gott III, et al., Astrophys. J. 624, 463 (2005).CrossRefADSGoogle Scholar
  15. 15.
    C. Park, et al., Astrophys. J. 633, 11 (2005).CrossRefADSGoogle Scholar
  16. 16.
    M. P. Veron-Cetty and P. Veron, Astron. Astrophys. 412, 399 (2003).CrossRefADSGoogle Scholar
  17. 17.
    E. Hubble, Proceedings of the National Academy of Sciences (USA) 15 (3), 168 (1929).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    S. Perlmutter, et al., Astrophys. J. 517, 565 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Main (Pulkovo) Astronomical Observatory of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations