Advertisement

Astrophysics

, Volume 53, Issue 3, pp 311–319 | Cite as

On a possible source of energy for the ejection of matter from cosmic objects

  • H. A. Harutyunian
Article
  • 23 Downloads

The transformation of the energy of an accelerating, expanding universe into internal energy of cosmic objects is discussed. The well known fact that Hubble expansion is observed on scale lengths two or more orders of magnitude smaller than the “cells of homogeneity” is taken into account, along with observational data indicating that this expansion also takes place on the scale of the solar system. Changes in the potential energy of individual model objects are examined on this basis and it is shown that the potential energy increases, thereby threatening the continued existence of these objects. An expression is obtained for the mass which can attain the escape energy within a given energy accumulation time. Some estimates are made for the assumed masses of galactic clusters. Over a period of 107 years a protocluster can accumulate enough energy for ejection of a clump of matter with a mass equal to that of our galaxy.

Keywords

Hubble expansion cD galaxies formation of cosmic objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Blandford and R. L. Znajek, Mon. Notic. Roy. Astron. Soc. 179, 433 (1977).ADSGoogle Scholar
  2. 2.
    R. Penrose, Nuovo Cimento Rivista, Numero Speciale 1, 252 (1969).Google Scholar
  3. 3.
    I. D. Karachentsev, and D. I. Makarov, Astrofizika 44, 5 (2001).ADSGoogle Scholar
  4. 4.
    I. D. Karachentsev, O. G. Kashibadze, D. I. Makarov, and R. B. Tully, Mon. Notic. Roy. Astron. Soc. 393, 1265 (2009).CrossRefADSGoogle Scholar
  5. 5.
    H. A. Harutyunian, Astrofizika 38, 667 (1995).Google Scholar
  6. 6.
    H. A. Harutyunian, Astrofizika 46, 103 (2003).Google Scholar
  7. 7.
    H. A. Harutyunian, Astrofizika 51, 173 (2008).Google Scholar
  8. 8.
    V. M. Slipher, Proc. Amer. Phil. Soc. 56, 403 (1917).ADSGoogle Scholar
  9. 9.
    V. M. Slipher, Astrophys. J. 61, 353 (1925).CrossRefADSGoogle Scholar
  10. 10.
    A. Friedman, Zeitschrift für Physik 10, 377 (1922) (English translation: General Relativity and Gravitation 31 (12), 1991–2000 (1999).CrossRefADSGoogle Scholar
  11. 11.
    G. Lemaître, Annales de la Société Scientifique de Bruxelles 47, 49 (1927).ADSGoogle Scholar
  12. 12.
    G. Lemaître, Nature 127 (3210), 706 (1931).CrossRefADSGoogle Scholar
  13. 13.
    E. P. Hubble, Proceedings of the National Academy of Sciences 15, 168 (1929).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    E. P. Hubble and M. L. Humason, Astrophys. J. 74, 43 (1931).CrossRefADSGoogle Scholar
  15. 15.
    E. P. Hubble and M. L. Humason, Proc. of the Nat. Acad. of Sci. 20, 264 (1934).CrossRefADSGoogle Scholar
  16. 16.
    A. Sandage, Astrophys. J. 527, 479 (1999).CrossRefADSGoogle Scholar
  17. 17.
    A. G. Riess, A. V. Filippenko, P. Challis, et al., Astron. J. 116, 1009 (1998).CrossRefADSGoogle Scholar
  18. 18.
    S. Perlmutter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  19. 19.
    V. A. Ambartsumian, La Structure et l’Evolution de ‘Univers, Editions Stoops, Brussels (1958), p. 241.Google Scholar
  20. 20.
    V. A. Ambartsumian, Astron. J. 66, 536 (1961).CrossRefADSGoogle Scholar
  21. 21.
    V. A. Ambartsumian, The Structure and Evolution of Galaxies, Interscience Publishers, London-NY-Sydney (1964), p. 1.Google Scholar
  22. 22.
    H. Arp, Seeing Red: Redshifts, Cosmology and Academic Science, Montreal, Apeiron (1998), p. 312.Google Scholar
  23. 23.
    G. Burbidge, Personal communication (2004).Google Scholar
  24. 24.
    I. D. Karachentsev and O. G. Kashibadze, Astrofizika 49, 5 (2006).Google Scholar
  25. 25.
    A. Oemler, Astrophys. J. 209, 693 (1976).CrossRefADSGoogle Scholar
  26. 26.
    J. M. Schombert, Astrophys. J. 328, 475 (1988).CrossRefADSGoogle Scholar
  27. 27.
    W. W. Morgan, S. Kayser, and R. A. White, Astrophys. J. 199, 545 (1975).CrossRefADSGoogle Scholar
  28. 28.
    C. E. Albert, W. W. Morgan, and R. A. White, Astrophys. J. 211, 309 (1977).CrossRefADSGoogle Scholar
  29. 29.
    T. X. Thuan and W. Romanishin, Astrophys. J. 248, 439 (1981).CrossRefADSGoogle Scholar
  30. 30.
    S. M. Faber and R. E. Jackson, Astrophys. J. 204, 668 (1976).CrossRefADSGoogle Scholar
  31. 31.
    W. R. Oegerle and J. G. Hoessel, Astrophys. J. 375, 15 (1991).CrossRefADSGoogle Scholar
  32. 32.
    T. R. Lauer, S. M. Faber, D. Richstone, et al., Astrophys. J. 662, 808 (2007).CrossRefADSGoogle Scholar
  33. 33.
    A. von der Linden, P. N. Best, G. Kauffmann, and S. D. M. White, Mon. Notic. Roy. Astron. Soc. 379, 867 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.V. A. Ambartsumian Byurakan Astrophysical ObservatoryByurakanArmenia

Personalised recommendations