Astrophysics

, Volume 49, Issue 1, pp 3–18 | Cite as

Masses of the local group and of the M81 group estimated from distortions in the local velocity field

  • I. D. Karachentsev
  • O. G. Kashibadze
Article

Abstract

Based on high precision measurements of the distances to nearby galaxies with the Hubble telescope, we have determined the radii of the zero velocity spheres for the local group, R0 = 0.96±0.03Mpc, and for the group of galaxies around M 81/M 82, 0.89±0.05Mpc. These yield estimates of MT = (1.29±0.14)· 1012 M and (1.03±0.17)· 1012 M, respectively, for the total masses of these groups. The R0 method allows us to determine the mass ratios for the two brightest members in both groups, as well. By varying the position of the center of mass between the two principal members of a group to obtain minimal scatter in the galaxies on a Hubble diagram, we find mass ratios of 0.8:1.0 for our galaxy and Andromeda and 0.54:1.00 for the M82 and M81 galaxies, in good agreement with the observed ratios of the luminosities of these galaxies.

Keywords

Galaxies Local group M81 group-galaxies masses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lynden-Bell, Observatory 101, 111 (1981).ADSGoogle Scholar
  2. 2.
    D. N. Spergel, L. Verde, H. V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 175 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. Sandage, Astrophys. J. 307 (1986).Google Scholar
  4. 4.
    A. Sandage, Astrophys. J. 317, 557 (1987).CrossRefADSGoogle Scholar
  5. 5.
    E. Giraud, Astron. Astrophys. 231 (1990).Google Scholar
  6. 6.
    I. D. Karachentsev, M. E. Sharina, I. D. Makarov et al., Astron. Astrophys. 389, 812 (2002).CrossRefADSGoogle Scholar
  7. 7.
    I. D. Karachentsev, Astron. J. 129, 17 (2005).CrossRefADSGoogle Scholar
  8. 8.
    I. D. Karachentsev, V. E. Karachentseva, W. K. Hutchmeier, and D. I. Makarov, Astron. J. 127, 2031 (2004) (=CNG).CrossRefADSGoogle Scholar
  9. 9.
    M. Fukujita and P. J. E. Peebles, Astrophys. J. 616, 643 (2004).ADSGoogle Scholar
  10. 10.
    P. J. E. Peebles, S. D. Phelps, E. J. Shaya, and R. B. Tully, Astrophys. J. 554, 104 (2001).CrossRefADSGoogle Scholar
  11. 11.
    R. B. Tully, Astrophys. J. 321, 280 (1987).CrossRefADSGoogle Scholar
  12. 12.
    A. C. Seth, J. J. Dalkanton, and R. S. de Jong, Astron. J. 129, 1331 (2005).CrossRefADSGoogle Scholar
  13. 13.
    J. M. Cannon, E. D. Skillman, K. R. Sembach, and D. J. Bomans, Astrophys. J. 618, 247 (2005).CrossRefADSGoogle Scholar
  14. 14.
    R. L. Fingerhut, M. L. McCall, M. De Robertis et al., Astrophys. J. 587, 672 (2003).CrossRefADSGoogle Scholar
  15. 15.
    D. R. Silva, P. Massey, K. DeGioia-Eastwood, and P. A. Henning, Astrophys. J. 129, 1331 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • I. D. Karachentsev
    • 1
  • O. G. Kashibadze
    • 2
  1. 1.Special Astrophysical ObservatoryRussian Academy of SciencesRussia
  2. 2.P. K. Shternberg State Astronomical InstituteRussia

Personalised recommendations