Traversable wormholes in \(f(R,T)\) gravity

  • Ambuj Kumar Mishra
  • Umesh Kumar SharmaEmail author
  • Vipin Chandra Dubey
  • Anirudh Pradhan
Original Article


In the present article, models of traversable wormholes within the \(f(R, T)\) modified gravity theory, where \(R\) is the Ricci scalar and \(T\) is the trace of the energy-momentum tensor, are investigated. We have presented some wormhole models, which are formulated from various hypothesis for their matter content, i.e. various relations for their lateral and radial pressure components. The solutions found for the shape functions of the wormholes produced complies with the required metric conditions. The validity of solution is examined by exploring null, strong and dominant energy conditions. It is concluded that the normal matter in the throat may pursue the energy conditions, and it is the higher-order curvature terms, termed as the gravitational field, that supports the non-standard geometries of wormholes in the context of modified gravity.


Traversable wormholes \(f(R,T)\) gravity Energy conditions Shape functions 



The authors are thankful to GLA University, Mathura, India for providing support and facility to carry out this research work. The authors are grateful to Ayan Banerjee, University of KwaZulu Natal, South Africa, for fruitful discussion and suggestions during his visit to GLA University. We would like to thank the learned reviewer(s) for his elaborate and valuable comments and suggestions/changes those help us to improve this paper significantly in the present form.


  1. Agnese, A.G., La Camera, M.: Wormholes in the Brans-Dicke theory of gravitation. Phys. Rev. D 51, 2011 (1995) ADSCrossRefGoogle Scholar
  2. Ahmed, N., Alamri, S.Z.: A stable flat universe with variable cosmological constant in \(f(R,T)\) gravity. Res. Astron. Astrophys. 18(10), 123 (2018) ADSCrossRefGoogle Scholar
  3. Allemandi, G., Borowiec, A., Francaviglia, M., Odintsov, S.D.: Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 72, 063505 (2005) ADSCrossRefGoogle Scholar
  4. Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Sáez-Gómez, D.: Dynamics of scalar perturbations in \(f(R,T)\) gravity. Phys. Rev. D 87(10), 103526 (2013a) ADSCrossRefGoogle Scholar
  5. Alvarenga, F.G., Houndjo, M.J.S., Monwanou, A.V., Orou, J.B.C.: Testing some \(f(R,T)\) gravity models from energy conditions. J. Mod. Phys. 4, 130 (2013b) CrossRefGoogle Scholar
  6. Amir, M., Banerjee, A., Maharaj, S.D.: Shadow of charged wormholes in Einstein–Maxwell-dilaton theory. Ann. Phys. 400, 198–207 (2019) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. Anchordoqui, L.A., Perez Bergliaffa, S.E., Torres, D.F.: Brans-Dicke wormholes in nonvacuum space-time. Phys. Rev. D 55, 5226 (1997) ADSCrossRefGoogle Scholar
  8. Azizi, T.: Wormhole geometries in \(f(R,T)\) gravity. Int. J. Theor. Phys. 52, 3486 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  9. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012) ADSzbMATHCrossRefGoogle Scholar
  10. Bambi, C.: Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 87, 107501 (2013) ADSCrossRefGoogle Scholar
  11. Banerjee, A., Moraes, P.H.R.S., Correa, R.A.C., Ribeiro, G.: Wormholes in Randall-Sundrum braneworld (2019a). arXiv preprint arXiv:1904.10310
  12. Banerjee, A., Singh, K., Jasim, M.K., Rahaman, F.: Traversable wormholes in \(f (R, T) \) gravity with conformal motions (2019b). arXiv preprint arXiv:1908.04754
  13. Bertolami, O., Zambujal Ferreira, R.: Traversable wormholes and time machines in non-minimally coupled curvature-matter \(f(R)\) theories. Phys. Rev. D 85, 104050 (2012) ADSCrossRefGoogle Scholar
  14. Bertolami, O., Boehmer, C.G., Harko, T., Lobo, F.S.N.: Extra force in \(f(R)\) modified theories of gravity. Phys. Rev. D 75, 104016 (2007) ADSMathSciNetCrossRefGoogle Scholar
  15. Bertolami, O., Lobo, F.S.N., Paramos, J.: Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D 78, 064036 (2008) ADSCrossRefGoogle Scholar
  16. Bertolami, O., Frazao, P., Paramos, J.: Accelerated expansion from a non-minimal gravitational coupling to matter. Phys. Rev. D 81, 104046 (2010) ADSCrossRefGoogle Scholar
  17. Bhattacharya, S., Chakraborty, S.: \(f(R)\) gravity solutions for evolving wormholes. Eur. Phys. J. C 77(8), 558 (2017) ADSCrossRefGoogle Scholar
  18. Bhatti, M.Z., Yousaf, Z., Ilyas, M.: Existence of wormhole solutions and energy conditions in \(f (R, T)\) gravity. J. Astrophys. Astron. 39, 69 (2018) ADSCrossRefGoogle Scholar
  19. Bhawal, B., Kar, S.: Lorentzian wormholes in Einstein-Gauss-Bonnet theory. Phys. Rev. D 46, 2464 (1992) ADSMathSciNetCrossRefGoogle Scholar
  20. Bronnikov, K.A., Galiakhmetov, A.M.: Wormholes without exotic matter in Einstein–Cartan theory. Gravit. Cosmol. 21(4), 283 (2015) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. Bronnikov, K.A., Kim, S.W.: Possible wormholes in a brane world. Phys. Rev. D 67, 064027 (2003) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. Capozziello, S., Harko, T., Koivisto, T.S., Lobo, F.S.N., Olmo, G.J.: Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D 86, 127504 (2012) ADSCrossRefGoogle Scholar
  23. Cataldo, M., Meza, P., Minning, P.: N-dimensional static and evolving Lorentzian wormholes with cosmological constant. Phys. Rev. D 83, 044050 (2011) ADSCrossRefGoogle Scholar
  24. Cataldo, M., Liempi, L., Rodríguez, P.: Traversable Schwarzschild-like wormholes. Eur. Phys. J. C 77(11), 748 (2017) ADSCrossRefGoogle Scholar
  25. Correa, R.A.C., Moraes, P.H.R.S.: Configurational entropy in \(f (R,T )\) brane models. Eur. Phys. J. C 76(2), 100 (2016) ADSCrossRefGoogle Scholar
  26. Debnath, P.S.: Bulk viscous cosmological model in \(f (R, T) \) theory of gravity (2019). arXiv preprint arXiv:1907.02238
  27. Dehghani, M.H., Hendi, S.H.: Wormhole solutions in Gauss-Bonnet-Born-infeld gravity. Gen. Relativ. Gravit. 41, 1853 (2009) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. Dotti, G., Oliva, J., Troncoso, R.: Static wormhole solution for higher-dimensional gravity in vacuum. Phys. Rev. D 75, 024002 (2007) ADSCrossRefGoogle Scholar
  29. Einstein, A., Rosen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73 (1935) ADSzbMATHCrossRefGoogle Scholar
  30. Elizalde, E., Khurshudyan, M.: Wormhole formation in \(f (R, T)\) gravity: varying Chaplygin gas and barotropic fluid. Phys. Rev. D 98, 123525 (2018) ADSMathSciNetCrossRefGoogle Scholar
  31. Elizalde, E., Khurshudyan, M.: Wormholes with \(\rho (R,R^{\prime })\) matter in \(f(R, T)\) gravity. Phys. Rev. D 99(2), 024051 (2019a) ADSMathSciNetCrossRefGoogle Scholar
  32. Elizalde, E., Khurshudyan, M.: Wormhole models in \(f({R}, {T})\) gravity. Int. J. Mod. Phys. D 28(15), 1950172 (2019b). arXiv:1909.11037 ADSMathSciNetCrossRefGoogle Scholar
  33. Garattini, R., Lobo, F.S.N.: Self sustained phantom wormholes in semi-classical gravity. Class. Quantum Gravity 24, 2401 (2007) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. Garattini, R., Lobo, F.S.N.: Self-sustained traversable wormholes in noncommutative geometry. Phys. Lett. B 671, 146 (2009) ADSMathSciNetCrossRefGoogle Scholar
  35. Garattini, R., Lobo, F.S.N.: Self-sustained wormholes in modified dispersion relations. Phys. Rev. D 85, 024043 (2012) ADSCrossRefGoogle Scholar
  36. Garcia, N.M., Lobo, F.S.N.: Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 82, 104018 (2010) ADSCrossRefGoogle Scholar
  37. Godani, N., Samanta, G.C.: Traversable wormholes and energy conditions with two different shape functions in \(f(R)\) gravity. Int. J. Mod. Phys. D 28(02), 1950039 (2018) ADSMathSciNetCrossRefGoogle Scholar
  38. Godani, N., Samanta, G.C.: Static traversable wormholes in \(f (R, T)= R+ 2\alpha \ln T\) gravity. Chin. J. Phys. 62, 161–171 (2019) CrossRefGoogle Scholar
  39. Golchin, H., Mehdizadeh, M.R.: Quasi-cosmological traversable wormholes in \(f(R)\) gravity. Eur. Phys. J. C 79(9), 777 (2019) ADSCrossRefGoogle Scholar
  40. Haghani, Z., Harko, T., Lobo, F.S.N., Sepangi, H.R., Shahidi, S.: Further matters in space-time geometry: \(f(R, T, R\mu \nu , T\mu \nu )\) gravity. Phys. Rev. D 88(4), 044023 (2013) ADSCrossRefGoogle Scholar
  41. Harko, T.: Thermodynamic interpretation of the generalized gravity models with geometry—matter coupling. Phys. Rev. D 90(4), 044067 (2014) ADSCrossRefGoogle Scholar
  42. Harko, T., Lobo, F.S.N.: \(f(R, L_{m})\) gravity. Eur. Phys. J. C 70, 373 (2010) ADSCrossRefGoogle Scholar
  43. Harko, T., Lobo, F.S.N.: Generalized curvature-matter couplings in modified gravity. Galaxies 2(3), 410 (2014) ADSCrossRefGoogle Scholar
  44. Harko, T., Kovacs, Z., Lobo, F.S.N.: Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D 79, 064001 (2009) ADSCrossRefGoogle Scholar
  45. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R,T)\) gravity. Phys. Rev. D 84, 024020 (2011). arXiv:1104.2669 [gr-qc] ADSCrossRefGoogle Scholar
  46. Harko, T., Lobo, F.S.N., Mak, M.K., Sushkov, S.V.: Modified-gravity wormholes without exotic matter. Phys. Rev. D 87(6), 067504 (2013) ADSCrossRefGoogle Scholar
  47. Jawad, A., Rani, S.: Non-minimal coupling of torsion–matter satisfying null energy condition for wormhole solutions. Eur. Phys. J. C 76(12), 704 (2016) ADSCrossRefGoogle Scholar
  48. Jordan, P.: The present state of Dirac’s cosmological hypothesis. Z. Phys. 157, 112 (1959) ADSCrossRefGoogle Scholar
  49. Kuhfittig, P.K.F.: Gravitational lensing of wormholes in the galactic halo region. Eur. Phys. J. C 74(99), 2818 (2014) ADSCrossRefGoogle Scholar
  50. La Camera, M.: Wormhole solutions in the Randall-Sundrum scenario. Phys. Lett. B 573, 27 (2003) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1998) zbMATHGoogle Scholar
  52. Lemos, J.P.S., Lobo, F.S.N., Quinet de Oliveira, S.: Morris-Thorne wormholes with a cosmological constant. Phys. Rev. D 68, 064004 (2003) ADSCrossRefGoogle Scholar
  53. Li, Z., Bambi, C.: Distinguishing black holes and wormholes with orbiting hot spots. Phys. Rev. D 90, 024071 (2014) ADSCrossRefGoogle Scholar
  54. Lobo, F.S.N.: A general class of braneworld wormholes. Phys. Rev. D 75, 064027 (2007) ADSMathSciNetCrossRefGoogle Scholar
  55. Lobo, F.S.N.: Exotic solutions in general relativity: traversable wormholes and ‘warp drive’ spacetimes. In: Classical and Quantum Gravity Research, pp. 1–78. Nova Science Publishers, New York (2008a). ISBN 978-1-60456-366-5. arXiv:0710.4474 [gr-qc] Google Scholar
  56. Lobo, F.S.N.: General class of wormhole geometries in conformal Weyl gravity. Class. Quantum Gravity 25, 175006 (2008b) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. Lobo, F.S.N. (ed.): Wormholes, Warp Drives and Energy Conditions. Fundam. Theor. Phys., vol. 189. Springer, Berlin (2017) zbMATHCrossRefGoogle Scholar
  58. Lobo, F.S.N., Oliveira, M.A.: Wormhole geometries in \(f(R)\) modified theories of gravity. Phys. Rev. D 80, 104012 (2009) ADSMathSciNetCrossRefGoogle Scholar
  59. Lobo, F.S.N., Oliveira, M.A.: General class of vacuum Brans-Dicke wormholes. Phys. Rev. D 81, 067501 (2010) ADSCrossRefGoogle Scholar
  60. Mandal, S., Sahoo, P., Sahoo, P.K.: Wormhole model with a hybrid shape function in \(f(R,T)\) gravity (2019). arXiv:1911.13247 [gr-qc]
  61. Mehdizadeh, M.R., Ziaie, A.H.: Einstein-Cartan wormhole solutions. Phys. Rev. D 95(6), 064049 (2017a) ADSMathSciNetCrossRefGoogle Scholar
  62. Mehdizadeh, M.R., Ziaie, A.H.: Dynamic wormhole solutions in Einstein-Cartan gravity. Phys. Rev. D 96(12), 124017 (2017b) ADSMathSciNetCrossRefGoogle Scholar
  63. Mehdizadeh, M.R., Kord Zangeneh, M., Lobo, F.S.N.: Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D 91(8), 084004 (2015) ADSMathSciNetCrossRefGoogle Scholar
  64. Momeni, D., Moraes, P.H.R.S., Myrzakulov, R.: Generalized second law of thermodynamics in \(f(R,T)\) theory of gravity. Astrophys. Space Sci. 361(7), 228 (2016) ADSMathSciNetCrossRefGoogle Scholar
  65. Montelongo Garcia, N., Lobo, F.S.N.: Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quantum Gravity 28, 085018 (2011) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. Moradpour, H., Jahromi, A.S.: Static traversable wormholes in Lyra manifold. Int. J. Mod. Phys. D 27(03), 1850024 (2017) MathSciNetGoogle Scholar
  67. Moraes, P.H.R.S.: Cosmological solutions from induced matter model applied to 5D \(f(R,T)\) gravity and the shrinking of the extra coordinate. Eur. Phys. J. C 75(4), 168 (2015) ADSMathSciNetCrossRefGoogle Scholar
  68. Moraes, P.H.R.S., Correa, R.A.C.: Braneworld cosmology in \(f(R,T)\) gravity. Astrophys. Space Sci. 361(3), 91 (2016) ADSMathSciNetCrossRefGoogle Scholar
  69. Moraes, P.H.R.S., Sahoo, P.K.: Modeling wormholes in \(f (R, T)\) gravity. Phys. Rev. D 96(4), 044038 (2017) ADSMathSciNetCrossRefGoogle Scholar
  70. Moraes, P.H.R.S., Sahoo, P.K.: Wormholes in exponential \(f (R, T) \) gravity (2019). arXiv preprint arXiv:1903.03421
  71. Moraes, P.H.R.S., Santos, J.R.L.: A complete cosmological scenario from \(f(R,T^{\phi })\) gravity theory. Eur. Phys. J. C 76, 60 (2016) ADSCrossRefGoogle Scholar
  72. Moraes, P.H.R.S., Arbañil, J.D.V., Malheiro, M.: Stellar equilibrium configurations of compact stars in \(f(R,T)\) gravity. J. Cosmol. Astropart. Phys. 1606, 005 (2016a) ADSMathSciNetCrossRefGoogle Scholar
  73. Moraes, P.H.R.S., Ribeiro, G., Correa, R.A.C.: A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of \(T\) in the \(f(R,T)\) formalism. Astrophys. Space Sci. 361(7), 227 (2016b) ADSMathSciNetCrossRefGoogle Scholar
  74. Moraes, P.H.R.S., Correa, R.A.C., Lobato, R.V.: Analytical general solutions for static wormholes in \(f(R,T)\) gravity. J. Cosmol. Astropart. Phys. 2017, 029 (2017) MathSciNetCrossRefGoogle Scholar
  75. Moraes, P.H.R.S., Correa, R.A.C., Ribeiro, G.: Evading the non-continuity equation in the \(f(R,T)\) cosmology. Eur. Phys. J. C 78(3), 192 (2018) ADSCrossRefGoogle Scholar
  76. Moraes, P.H.R.S., de Paula, W., Correa, R.A.C.: Charged wormholes in \(f(R,T)\) extended theory of gravity. Int. J. Mod. Phys. D 28(08), 1950098 (2019a) ADSMathSciNetCrossRefGoogle Scholar
  77. Moraes, P.H.R.S., Sahoo, P.K., Kulkarni, S.S., Agarwal, S.: An exponential shape function for wormholes in modified gravity. Chin. Phys. Lett. 36, 120401 (2019b) ADSCrossRefGoogle Scholar
  78. Morris, M.S., Thorne, K.S.: Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988) ADSzbMATHCrossRefGoogle Scholar
  79. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61(1446), 1446 (1988) ADSCrossRefGoogle Scholar
  80. Myrzakulov, R.: FRW cosmology in \(F(R,T) \) gravity. Eur. Phys. J. C 72, 2203 (2012) ADSCrossRefGoogle Scholar
  81. Nagpal, R., Pacif, S.K.J., Singh, J.K., Bamba, K., Beesham, A.: Analysis with observational constraints in \(\Lambda \)-cosmology in \(f(R, T)\) gravity. Eur. Phys. J. C 78(11), 946 (2018) ADSCrossRefGoogle Scholar
  82. Nandi, K.K., Bhattacharjee, B., Alam, S.M.K., Evans, J.: Brans-Dicke wormholes in the Jordan and Einstein frames. Phys. Rev. D 57, 823 (1998) ADSMathSciNetCrossRefGoogle Scholar
  83. Nandi, K.K., Zhang, Y.Z., Zakharov, A.V.: Gravitational lensing by wormholes. Phys. Rev. D 74, 024020 (2006) ADSCrossRefGoogle Scholar
  84. Nojiri, S., Odintsov, S.D.: Gravity assisted dark energy dominance and cosmic acceleration. Phys. Lett. B 599, 137 (2004) ADSCrossRefGoogle Scholar
  85. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  86. Nojiri, S., Obregon, O., Odintsov, S.D., Osetrin, K.E.: Can primordial wormholes be induced by GUTs at the early universe? Phys. Lett. B 458, 19 (1999) ADSCrossRefGoogle Scholar
  87. Nojiri, S., Odintsov, S.D., Sami, M.: Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 74, 046004 (2006) ADSCrossRefGoogle Scholar
  88. Nojiri, S., Odintsov, S.D., Tretyakov, P.V.: From inflation to dark energy in the non-minimal modified gravity. Prog. Theor. Phys. Suppl. 172, 81 (2008) ADSzbMATHCrossRefGoogle Scholar
  89. Noureen, I., Zubair, M.: Dynamical instability and expansion-free condition in \(f(R, T)\) gravity. Eur. Phys. J. C 75(99), 62 (2015) ADSCrossRefGoogle Scholar
  90. Noureen, I., Zubair, M., Bhatti, A.A., Abbas, G.: Shear-free condition and dynamical instability in \(f(R, T)\) gravity. Eur. Phys. J. C 75(7), 323 (2015) ADSCrossRefGoogle Scholar
  91. Pan, S., Chakraborty, S.: Dynamic wormholes with particle creation mechanism. Eur. Phys. J. C 75(1), 21 (2015) ADSCrossRefGoogle Scholar
  92. Rahaman, F., Kalam, M., Sarker, M., Ghosh, A., Raychaudhuri, B.: Wormhole with varying cosmological constant. Gen. Relativ. Gravit. 39, 145 (2007) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. Rahaman, F., Kuhfittig, P.K.F., Ray, S., Islam, N.: Possible existence of wormholes in the galactic halo region. Eur. Phys. J. C 74, 2750 (2014) ADSCrossRefGoogle Scholar
  94. Romero, J.M., Bellini, M.: Traversable wormhole magnetic monopoles from Dymnikova metric. Eur. Phys. J. Plus 134(11), 579 (2019) CrossRefGoogle Scholar
  95. Rosa, J.L., Lemos, J.P.S., Lobo, F.S.N.: Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 98(6), 064054 (2018) ADSMathSciNetCrossRefGoogle Scholar
  96. Saaidi, K., Nazavari, N.: Traversable wormhole solutions in Rastall teleparallel gravity. Phys. Dark Universe 28, 100464 (2020) CrossRefGoogle Scholar
  97. Sahoo, P., Kirschner, A., Sahoo, P.K.: Phantom fluid wormhole in \(f (R, T) \) gravity (2019). arXiv preprint arXiv:1906.04048
  98. Sahu, S.K., Ganebo, S.G., Weldemariam, G.G.: Kaluza-Klein tilted cosmological model in Lyra geometry. Iran. J. Sci. Technol. A 42(3), 1451 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  99. Samanta, G.C., Godani, N., Bamba, K.: Traversable Wormholes with Exponential Shape Function in Modified Gravity and in General Relativity: A Comparative Study (2018). arXiv:1811.06834v1 [gr-qc]
  100. Shamir, M.F.: Locally rotationally symmetric Bianchi type I cosmology in \(f(R, T)\) gravity. Eur. Phys. J. C 75(8), 354 (2015) ADSCrossRefGoogle Scholar
  101. Sharif, M., Nawazish, I.: Viable wormhole solutions and Noether symmetry in \(f(R,T)\) gravity. Ann. Phys. 400, 37 (2019) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. Sharif, M., Zubair, M.: Energy conditions constraints and stability of power law solutions in \(f(R,T)\) gravity. J. Phys. Soc. Jpn. 82, 014002 (2013) ADSCrossRefGoogle Scholar
  103. Sharma, U.K., Pradhan, A.: Cosmology in modified \(f(R,T)\)-gravity theory in a variant \(\Lambda (T)\) scenario-revisited. Int. J. Geom. Methods Mod. Phys. 15(01), 1850014 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  104. Sharma, U.K., Zia, R., Pradhan, A., Beesham, A.: Stability of LRS Bianchi type-I cosmological models in \(f(R,T)\)-gravity. Res. Astron. Astrophys. 19(4), 055 (2019) ADSCrossRefGoogle Scholar
  105. Shinkai, H.A., Hayward, S.A.: Fate of the first traversible wormhole: black hole collapse or inflationary expansion. Phys. Rev. D 66, 044005 (2002) ADSMathSciNetCrossRefGoogle Scholar
  106. Singh, K.N., Banerjee, A., Rahaman, F., Jasim, M.K.: Conformally symmetric traversable wormholes in modified teleparallel gravity (2020). arXiv:2001.00816 [gr-qc]
  107. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980) ADSzbMATHCrossRefGoogle Scholar
  108. Tsukamoto, N.: Strong deflection limit analysis and gravitational lensing of an Ellis wormhole. Phys. Rev. D 94(12), 124001 (2016) ADSMathSciNetCrossRefGoogle Scholar
  109. Tsukamoto, N.: Retrolensing by a wormhole at deflection angles \(\pi \) and \(3\pi \). Phys. Rev. D 95(8), 084021 (2017) ADSMathSciNetCrossRefGoogle Scholar
  110. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. Springer, New York (1996) Google Scholar
  111. Wheeler, J.A.: Geometrodynamics. Academic Press, San Diego (1962) zbMATHGoogle Scholar
  112. Yousaf, Z., Ilyas, M., Zaeem-ul-Haq Bhatti, M.: Static spherical wormhole models in \(f (R, T)\) gravity. Eur. Phys. J. Plus 132(6), 268 (2017) CrossRefGoogle Scholar
  113. Zhou, M., Cardenas-Avendano, A., Bambi, C., Kleihaus, B., Kunz, J.: Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy. Phys. Rev. D 94(2), 024036 (2016) ADSCrossRefGoogle Scholar
  114. Zubair, M., Noureen, I.: Evolution of axially symmetric anisotropic sources in \(f(R, T)\) gravity. Eur. Phys. J. C 75(6), 265 (2015) ADSCrossRefGoogle Scholar
  115. Zubair, M., Waheed, S., Ahmad, Y.: Static spherically symmetric wormholes in \(f(R, T)\) gravity. Eur. Phys. J. C 76(8), 444 (2016a) ADSCrossRefGoogle Scholar
  116. Zubair, M., Waheed, S., Ahmad, Y.: Static spherically symmetric wormholes in \(f(R, T)\) gravity. Eur. Phys. J. C 76(8), 444 (2016b) ADSCrossRefGoogle Scholar
  117. Zubair, M., Abbas, G., Noureen, I.: Possible formation of compact stars in \(f(R,T)\) gravity. Astrophys. Space Sci. 361(1), 8 (2016c) ADSMathSciNetCrossRefGoogle Scholar
  118. Zubair, M., Mustafa, G., Waheed, S., Abbas, G.: Existence of stable wormholes on a non-commutative-geometric background in modified gravity. Eur. Phys. J. C 77(10), 680 (2017) CrossRefGoogle Scholar
  119. Zubair, M., Saleem, R., Ahmad, Y., Abbas, G.: Exact wormholes solutions without exotic matter in \(f (R, T)\) gravity. Int. J. Geom. Methods Mod. Phys. 16, 1950046 (2019) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Mathematics, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia

Personalised recommendations