Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Linear expansion models vs. standard cosmologies: a critical and historical overview

  • 59 Accesses

Abstract

Numerous linear expansion cosmological models are critically revised and compared with standard cosmologies from a historical perspective. There are two major classes of such models: those strictly linear along the expansion history (coasting) and those linear at late times, but not in the early Universe (quasi-linear). Their merits and weaknesses, theoretical foundations and compatibility with diverse observational constraints are assessed. The ways the different models, a number of them avoiding inflation, try to solve the cosmological problems of Big Bang cosmology are also considered. Some severe tensions, model-dependent analyses, inconclusive data and unsettled controversy after two decades since the \(\varLambda \)CDM model became the standard cosmology are pointed out. All in all, at least quasi-linear models cannot be definitely ruled out so far. Certainly, \(\varLambda \)CDM continues dominating the landscape, but the growing evidence here reported advises paying some attention to the (quasi-)linear expansion scenario as an alternative cosmology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdel-Rahman, A.M.: Singularity-free decaying-vacuum cosmologies. Phys. Rev. D 45(10), 3497 (1992)

  2. Abdel-Rahman, A.M., Riad, I.F.: Astron. J. 134, 1391 (2007)

  3. Aghanim, N., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A.J., et al.: Planck intermediate results-XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astron. Astrophys. 596, A107 (2016)

  4. Alam, S., Ata, M., Bailey, S., et al.: Mon. Not. R. Astron. Soc. 470, 2617 (2017). arXiv:1607.03155

  5. Allen, R.E.: Four testable predictions of instanton cosmology. In: AIP Conference Proceedings, vol. 478, pp. 204–207. AIP, New York (1999). No. 1

  6. Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., et al.: Spectra and Hubble Space Telescope light curves of six type Ia supernovae at \(0.511< z< 1.12\) and the Union2 compilation. Astrophys. J. 716(1), 712 (2010)

  7. Amendola, L., Tocchini-Valentini, D.: Phys. Rev. D 64, 043509 (2001)

  8. Amendola, L., Tsujikawa, S., Sami, M.: Phys. Lett. B 632, 155 (2006)

  9. Avelino, A., Kirshner, R.P.: The dimensionless age of the Universe: a riddle for our time. Astrophys. J. 828(1), 35 (2016)

  10. Batra, A., Lohiya, D., Mahajan, S., Mukherjee, A.: Nucleosynthesis in a universe with a linearly evolving scale factor. Int. J. Mod. Phys. D 9(06), 757–773 (2000)

  11. Bautista, J.E., Guy, J., Rich, J., Blomqvist, M., Des Bourboux, H.D.M., Pieri, M.M., et al.: Measurement of baryon acoustic oscillation correlations at \(z= 2.3\) with SDSS DR12 Ly\(\alpha \)-Forests. Astron. Astrophys. 603, A12 (2017)

  12. Benoit-Lévy, A., Chardin, G.: Introducing the Dirac-Milne universe. Astron. Astrophys. 537, A78 (2012)

  13. Bilicki, M., Seikel, M.: We do not live in the Rh = ct universe. Mon. Not. R. Astron. Soc. 425, 1664 (2012)

  14. Blumenthal, G.R., Faber, S.M., Primack, J.R., Rees, M.J.: Formation of galaxies and large-scale structure with cold dark matter. Nature 311(5986), 517 (1984)

  15. Casado, J.: (2004). ArXiv preprint, arXiv:astro-ph/0404130v1

  16. Casado, J.: Modeling the expansion of the Universe by a steady flow of space-time. Apeiron16(2) (2009)

  17. Casado, J., Jou, D.: Steady Flow cosmological model. Astrophys. Space Sci. 344(2), 513–520 (2013)

  18. Chen, G., Ratra, B.: Median statistics and the Hubble constant. Publ. Astron. Soc. Pac. 123(907), 1127 (2011)

  19. Chen, W., Wu, Y.S.: Implications of a cosmological constant varying as R−2. Phys. Rev. D 41(2), 695 (1990)

  20. Cimatti, A., Daddi, E., Renzini, A., Cassata, P., Vanzella, E., Pozzetti, L., et al.: Old galaxies in the young Universe. Nature 430(6996), 184 (2004)

  21. Coles, P., Lucchin, F.: Cosmology: The Origin and Evolution of Cosmic Structure. John Wiley & Sons, New York (2003)

  22. Delubac, T., Bautista, J.E., Rich, J., Kirkby, D., Bailey, S., Font-Ribera, A., et al.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015)

  23. Dev, A., Sethi, M., Lohiya, D.: Linear coasting in cosmology and SNe Ia. Phys. Lett. B 504(3), 207–212 (2001)

  24. Dev, A., Safonova, M., Jain, D., Lohiya, D.: Cosmological tests for a linear coasting cosmology. Phys. Lett. B 548(1–2), 12–18 (2002)

  25. Dolgov, A.D.: In: Gibbons, G.W., Hawking, S.W., Siklos, S.T.C. (eds.) The Very Early Universe, p. 449. Cambridge University Press, Cambridge (1983)

  26. Dolgov, A.D.: Higher spin fields and the problem of the cosmological constant. Phys. Rev. D 55(10), 5881 (1997)

  27. Einstein, A., De Sitter, W.: On the relation between the expansion and the mean density of the universe. Proc. Natl. Acad. Sci. 18(3), 213–214 (1932)

  28. Ellis, G.F.R.: Gen. Relativ. Gravit. 32, 1135 (2000)

  29. Farooq, O., Madiyar, F.R., Crandall, S., Ratra, B.: Astrophys. J. 835, 26 (2017). arXiv:1607.03537

  30. Feng, C., Wang, B., Abdalla, E., Su, R.: Phys. Lett. B 665, 111 (2008)

  31. Ford, L.H.: Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 35(8), 2339 (1987)

  32. Friaça, A.C.S., Alcañiz, J.S., Lima, J.A.S.: An old quasar in a young dark energy-dominated universe? Mon. Not. R. Astron. Soc. 362(4), 1295–1300 (2005)

  33. Funkhouser, S.: A new large-number coincidence and a scaling law for the cosmological constant. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 464, pp. 1345–1353 (2008). The Royal Society. No. 2093

  34. Gehlaut, S., Kumar, P., Lohiya, D.: A concordant “Freely Coasting Cosmology” (2003). ArXiv preprint, astro-ph/0306448

  35. Gómez-Valent, A., Amendola, L.: H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. J. Cosmol. Astropart. Phys. 2018(04), 051 (2018)

  36. Gott, J.R. III, Vogeley, M.S., Podariu, S., Ratra, B.: Median statistics, H0, and the accelerating universe. Astrophys. J. 549(1), 1 (2001)

  37. Gumjudpai, B.: Quintessential power-law cosmology: dark energy equation of state. Mod. Phys. Lett. A 28(29), 1350122 (2013)

  38. Guth, A.H., Lightman, A.P.: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus Publishing, ??? (1997)

  39. Haridasu, B.S., Luković, V.V., D’Agostino, R., Vittorio, N.: Strong evidence for an accelerating Universe. Astron. Astrophys. 600, L1 (2017)

  40. Haridasu, B.S., Luković, V.V., Moresco, M., Vittorio, N.: An improved model-independent assessment of the late-time cosmic expansion (2018a). ArXiv preprint, arXiv:1805.03595

  41. Haridasu, B.S., Luković, V.V., Vittorio, N.: Isotropic vs. anisotropic components of BAO data: a tool for model selection. J. Cosmol. Astropart. Phys. 2018(05), 033 (2018b)

  42. Hasinger, G., Schartel, N., Komossa, S.: Discovery of an ionized Fe K edge in the \(z=3.91\) broad absorption line quasar APM 08279+ 5255 with XMM-Newton. Astrophys. J. Lett. 573(2), L77 (2002)

  43. Hu, Y., Turner, M.S., Weinberg, E.J.: Phys. Rev. D 49, 3830 (1994)

  44. Jain, D., Dev, A., Alcañiz, J.S.: Class. Quantum Gravity 20, 4485 (2003)

  45. Jain, D., Alcañiz, J.S., Dev, A.: Nucl. Phys. B 732, 379 (2006)

  46. John, M.V.: Exact classical correspondence in quantum cosmology. Gravit. Cosmol. 21(3), 208–215 (2015)

  47. John, M.V.: Realistic coasting cosmology from the Milne model (2018). ArXiv preprint, arXiv:1610.09885

  48. John, M.V., Joseph, K.B.: A modified Ozer-Taha type cosmological model. Phys. Lett. B 387(3), 466–470 (1996)

  49. John, M.V., Joseph, K.B.: Generalized Chen-Wu type cosmological model. Phys. Rev. D 61(8), 087304 (2000)

  50. John, M.V., Narlikar, J.V.: Phys. Rev. D 65, 043506 (2002)

  51. Kaplinghat, M., Steigman, G., Tkachev, I., Walker, T.P.: Observational constraints on power-law cosmologies. Phys. Rev. D 59(4), 043514 (1999)

  52. Keller, S.C., Bessell, M.S., Frebel, A., Casey, A.R., Asplund, M., Jacobson, H.R., et al.: A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. Nature 506(7489), 463 (2014). https://doi.org/10.1038/nature12990

  53. Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715(2), 743 (2010)

  54. Kolb, E.W.: A coasting cosmology. Astrophys. J. 344, 543–550 (1989)

  55. Kragh, H.: Contemporary history of cosmology and the controversy over the multiverse. Ann. of Sci. 66(4), 529–551 (2009)

  56. Krauss, L.M.: Astrophys. J. 480, 466 (1997)

  57. Kumar, S.: Observational constraints on Hubble constant and deceleration parameter in power-law cosmology. Mon. Not. R. Astron. Soc. 422(3), 2532–2538 (2012)

  58. Kumar, R.: A New Class of Cosmologically ‘Viable’ \(f (R)\) Models (2016). ArXiv preprint, arXiv:1611.03728

  59. Lemons, D.S., Peter, W.: Gravitational instability in a coasting universe. Astron. Astrophys. 265, 373 (1992)

  60. Lewis, G.F.: Matter matters: unphysical properties of the Rh = ct universe. Mon. Not. R. Astron. Soc. 432(3), 2324–2330 (2013)

  61. Lohiya, D., Sethi, M.: A programme for a problem-free cosmology within the framework of a rich class of scalar-tensor theories. Class. Quantum Gravity 16(5), 1545 (1999)

  62. Mamon, A.A., Bamba, K.: Observational constraints on the jerk parameter with the data of the Hubble parameter (2018). ArXiv preprint, arXiv:1805.02854

  63. Maoz, D.: Quasar lensing statistics and omega_lambda: what went wrong? In: Mellier, Y., Meylan, G. (eds.) Impact of Gravitational Lensing on Cosmology. Proceedings of the IAU Symposium, vol. 225 (2005). arXiv:astro-ph/0501491v1

  64. Marugán, G., Carneiro, S.: Phys. Rev. D 65, 087303 (2002). arXiv:gr-qc/0111034v2

  65. Melia, F.: High-z quasars in the Rh = ct universe. Astrophys. J. 764(1), 72 (2013)

  66. Melia, F.: The premature formation of high-redshift galaxies. Astron. J. 147(5), 120 (2014a)

  67. Melia, F.: On recent claims concerning the Rh = ct Universe. Mon. Not. R. Astron. Soc. 446(2), 1191–1194 (2014b)

  68. Melia, F.: Constancy of the cluster gas mass fraction in the Rh = ct Universe. Proc. R. Soc. A 472(2186), 20150765 (2016)

  69. Melia, F.: The linear growth of structure in the Rh = ct universe. Mon. Not. R. Astron. Soc. 464(2), 1966–1976 (2017)

  70. Melia, F., López-Corredoira, M.: Alcock–Paczyński test with model-independent BAO data. Int. J. Mod. Phys. D 26(06), 1750055 (2017)

  71. Melia, F., Maier, R.S.: Mon. Not. R. Astron. Soc. 432, 2669 (2013)

  72. Melia, F., McClintock, T.M.: Astron. J. 150, 119 (2015)

  73. Melia, F., Shevchuk, A.S.H.: The Rh = ct universe. Mon. Not. R. Astron. Soc. 419(3), 2579–2586 (2012)

  74. Méndez, V., Pavón, D.: Expanding models with a varying cosmological term and bulk stress. Gen. Relativ. Gravit. 28(6), 679–689 (1996)

  75. Milne, E.A.: Relativity, Gravitation and World Structure. Oxford University Press, Oxford (1935)

  76. Mishra, B., Ray, P.P., Myrzakulov, R.: Bulk viscous embedded hybrid dark energy models. Eur. Phys. J. C 79(1), 34 (2019)

  77. Mitra, A.: Mon. Not. R. Astron. Soc. 442, 382 (2014)

  78. Nielsen, J.T., Guffanti, A., Sarkar, S.: Marginal evidence for cosmic acceleration from Type Ia supernovae. Nat. Sci. Rep. 6, 35596 (2016)

  79. Olson, T.S., Jordan, T.F.: Ages of the Universe for decreasing cosmological constants. Phys. Rev. D 35(10), 3258 (1987)

  80. Ostriker, J.P., Steinhardt, P.J.: The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377(6550), 600 (1995)

  81. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998). arXiv:astro-ph/9805260v1

  82. Özer, M., Taha, M.O.: A possible solution to the main cosmological problems. Phys. Lett. B 171(4), 363–365 (1986)

  83. Padmanabhan, T.: Cosmological constant—the weight of the vacuum. Phys. Rep. 380(5–6), 235–320 (2003)

  84. Pavón, D.: Nonequilibrium fluctuations in cosmic vacuum decay. Phys. Rev. D 43(2), 375 (1991)

  85. Pavón, D., Bafaluy, J., Jou, D.: Causal Friedmann-Robertson-Walker cosmology. Class. Quantum Gravity 8(2), 347 (1991)

  86. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)

  87. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al.: Measurements of \(\varOmega \) and \(\varLambda \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)

  88. Petri, M.: Holographic spherically symmetric metrics. Int. J. Mod. Phys. E 16(06), 1603–1641 (2007)

  89. Pimentel, L.O., Diaz-Rivera, L.M.: Coasting cosmologies with time dependent cosmological constant. Int. J. Mod. Phys. A 14(10), 1523–1529 (1999)

  90. Rácz, G., Dobos, L., Beck, R., Szapudi, I., Csabai, I.: Concordance cosmology without dark energy. Mon. Not. R. Astron. Soc. Lett. 469(1), L1–L5 (2017)

  91. Rani, S., Altaibayeva, A., Shahalam, M., Singh, J.K., Myrzakulov, R.: Constraints on cosmological parameters in power-law cosmology. J. Cosmol. Astropart. Phys. 2015(03), 031 (2015)

  92. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

  93. Riess, A.G., Filippenko, A.V., Li, W., Schmidt, B.P.: Is there an indication of evolution of type Ia supernovae from their rise times? Astron. J. 118(6), 2668 (1999)

  94. Riess, A.G., Strolger, L.G., Tonry, J., Casertano, S., Ferguson, H.C., Mobasher, B., et al.: Type Ia supernova discoveries at \(z> 1\) from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607(2), 665 (2004)

  95. Riess, A.G., Strolger, L.G., Casertano, S., Ferguson, H.C., Mobasher, B., Gold, B., et al.: New Hubble space telescope discoveries of type Ia supernovae at \(z \geq 1\): narrowing constraints on the early behavior of dark energy. Astrophys. J. 659(1), 98 (2007)

  96. Riess, A.G., Rodney, S.A., Scolnic, D.M., Shafer, D.L., Strolger, L.G., Ferguson, H.C., et al.: Type Ia supernova distances at redshift >1.5 from the Hubble Space Telescope multi-cycle treasury programs: the early expansion rate. Astrophys. J. 853(2), 126 (2018a)

  97. Riess, A.G., Casertano, S., Yuan, W., Macri, L., Anderson, J., MacKenty, J.W., et al.: New parallaxes of galactic cepheids from spatially scanning the hubble space telescope: implications for the hubble constant. Astrophys. J. 855(2), 136 (2018b)

  98. Rubin, D., Hayden, B.: Is the expansion of the universe accelerating? All signs point to yes. Astrophys. J. Lett. 833(2), L30 (2016)

  99. Sahni, V., Starobinsky, A.: The case for a positive cosmological \(\varLambda \)-term. Int. J. Mod. Phys. D 9(04), 373–443 (2000)

  100. Sattar, A., Vishwakarma, R.G.: Some FRW models with variable G and \(\varLambda \). Class. Quantum Gravity 14(4), 945 (1997)

  101. Schmidt, B.P., Suntzeff, N.B., Phillips, M.M., Schommer, R.A., Clocchiatti, A., Kirshner, R.P., et al.: The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507(1), 46 (1998)

  102. Seikel, M., Schwarz, D.J.: How strong is the evidence for accelerated expansion? J. Cosmol. Astropart. Phys. 2008(02), 007 (2008)

  103. Sen, A.A., Pavón, D.: Phys. Lett. B 664, 7–11 (2008)

  104. Sethi, G., Dev, A., Jain, D.: Cosmological constraints on a power law universe. Phys. Lett. B 624(3–4), 135–140 (2005)

  105. Shafer, D.L.: Robust model comparison disfavors power law cosmology. Phys. Rev. D 91(10), 103516 (2015)

  106. Shafieloo, A., Sahni, V., Starobinsky, A.A.: Phys. Rev. D 80, 101301(R) (2009)

  107. Silveira, V., Waga, I.: Decaying \(\varLambda \) cosmologies and power spectrum. Phys. Rev. D 50(8), 4890 (1994)

  108. Silveira, V., Waga, I.: Cosmological properties of a class of \(\varLambda \) decaying cosmologies. Phys. Rev. D 56(8), 4625 (1997)

  109. Singh, P., Lohiya, D.: Constraints on lepton asymmetry from nucleosynthesis in a linearly coasting cosmology. J. Cosmol. Astropart. Phys. 2015(05), 061 (2015)

  110. Solà, J., Gómez-Valent, A., de Cruz Pérez, J.: The H0 tension in light of vacuum dynamics in the Universe. Phys. Lett. B 774, 317–324 (2017)

  111. Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al.: First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148(1), 175 (2003)

  112. Sultana, J.: The \(R _{{h}} = \mathit{ct}\) universe and quintessence. Mon. Not. R. Astron. Soc. 457(1), 212–216 (2016). https://doi.org/10.1093/mnras/stv3012

  113. Tonry, J.L., Schmidt, B.P., Barris, B., Candia, P., Challis, P., Clocchiatti, A., et al.: Cosmological results from high-\(z\) supernovae. Astrophys. J. 594(1), 1 (2003)

  114. Tutusaus, I., Lamine, B., Blanchard, A.: Model-independent cosmic acceleration and type Ia supernovae intrinsic luminosity redshift dependence (2018). ArXiv preprint, arXiv:1803.06197

  115. Uzan, J-P.: Rev. Mod. Phys. 75, 403 (2003)

  116. Wang, B., Gong, Y-g., Abdalla, E.: Phys. Lett. B 624, 141 (2005)

  117. Wang, B., Zang, J., Lin, C.Y., Abdalla, E., Micheletti, S.: Interacting dark energy and dark matter: observational constraints from cosmological parameters. Nucl. Phys. B 778(1–2), 69–84 (2007)

  118. Watson, D.F., Berlind, A.A., Zentner, A.R.: A cosmic coincidence: the power-law galaxy correlation function. Astrophys. J. 738(1), 22 (2011)

  119. Wei, J.J., Wu, X.F., Melia, F.: A comparison of cosmological models using time delay lenses. Astrophys. J. 788(2), 190 (2014a)

  120. Wei, J.J., Wu, X.F., Melia, F., Wei, D.M., Feng, L.L.: Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Mon. Not. R. Astron. Soc. 439(4), 3329–3341 (2014b)

  121. Wei, J.J., Wu, X.F., Melia, F., Maier, R.S.: A comparative analysis of the supernova legacy survey sample with \(\varLambda \)CDM and the Rh = ct Universe. Astron. J. 149(3), 102 (2015)

  122. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61(1), 1 (1989)

  123. Weinberg, S.: The Cosmological Constant Problems (Talk given at Dark Matter 2000, Marina del Rey, CA, February 2000). ArXiv preprint, arXiv:astro-ph/0005265

  124. Williams, J.G., Newall, X.X., Dickey, J.O.: Phys. Rev. D 53, 6730 (1996)

  125. Yang, W., Pan, S., Di Valentino, E., Paliathanasis, A., Lu, J.: Challenging bulk viscous unified scenarios with cosmological observations (2019). ArXiv preprint, arXiv:1906.04162

  126. Yennapureddy, M.K., Melia, F.: A cosmological solution to the Impossibly Early Galaxy Problem. Phys. Dark Universe 20, 65–71 (2018)

  127. Yu, H., Ratra, B., Wang, F.Y.: Hubble parameter and Baryon acoustic oscillation measurement constraints on the Hubble constant, the deviation from the spatially flat \(\varLambda \)CDM model, the deceleration–acceleration transition redshift, and spatial curvature. Astrophys. J. 856(1), 3 (2018)

  128. Zhao, G.B., Raveri, M., Pogosian, L., Wang, Y., Crittenden, R.G., Handley, W.J., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1(9), 627 (2017)

  129. Zhu, Z.H., Hu, M., Alcañiz, J.S., Liu, Y.X.: Astron. Astrophys. 483, 15 (2008). arXiv:0712.3602v1

  130. Zimdahl, W., Pavón, D., Chimento, L.P.: Phys. Lett. B 521, 133 (2001)

  131. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82(5), 896 (1999)

Download references

Author information

Correspondence to Juan Casado.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casado, J. Linear expansion models vs. standard cosmologies: a critical and historical overview. Astrophys Space Sci 365, 16 (2020). https://doi.org/10.1007/s10509-019-3720-z

Download citation

Keywords

  • Linear expansion
  • Standard cosmology
  • Cosmological problems
  • Observational constraints
  • Coasting models
  • \(\mathit{Rh} = \mathit{ct}\) universe
  • Steady Flow model