Dead zones of classical habitability in stellar binary systems

  • S. Y. Moorman
  • Z. Wang
  • M. CuntzEmail author
Original Article


Although habitability, defined as the general possibility of hosting life, is expected to occur under a broad range of conditions, the standard scenario to allow for habitable environments is often described through habitable zones (HZs). Previous work indicates that stellar binary systems typically possess S-type or P-type HZs, with the S-type HZs forming ring-type structures around the individual stars and P-type HZs forming similar structures around both stars, if considered a pair. However, depending on the stellar and orbital parameters of the system, typically, there are also regions within the systems outside of the HZs, referred to as dead zones (DZs). In this study, we will convey quantitative information on the width and location of DZs for various systems. The results will also depend on the definition of the stellar HZs as those are informed by the planetary climate models.


Astrobiology Binaries: general Planetary systems Stars: late-type 



This work has been supported by the Department of Physics, University of Texas at Arlington and the U.S. Department of Education through the Graduate Assistance in Areas of National Need (GAANN) program (S. Y. M.). Additionally, we wish to draw the reader’s attention to the online tool BinHab 2.0, created by one of us (Z. W.) and hosted at The University of Texas at Arlington. It allows the calculation of habitable regions in binary systems based on the developed method.


  1. Arney, G.N.: Astrophys. J. Lett. 873, L7 (2019) ADSCrossRefGoogle Scholar
  2. Bains, W.: Astrobiology 4, 137 (2004) ADSCrossRefGoogle Scholar
  3. Barnes, R., Jackson, B., Greenberg, R., Raymond, S.N.: Astrophys. J. Lett. 700, L30 (2009) ADSCrossRefGoogle Scholar
  4. Chabrier, G.: Publ. Astron. Soc. Pac. 115, 763 (2003) ADSCrossRefGoogle Scholar
  5. Cockell, C.S., Bush, T., Bryce, S., et al.: Astrobiology 16, 89 (2016) ADSCrossRefGoogle Scholar
  6. Cuntz, M.: Astrophys. J. 780, 14 (2014) ADSCrossRefGoogle Scholar
  7. Cuntz, M.: Astrophys. J. 798, 101 (2015) ADSCrossRefGoogle Scholar
  8. Cuntz, M., Guinan, E.F.: Astrophys. J. 827, 79 (2016) ADSCrossRefGoogle Scholar
  9. Des Marais, D.J., Nuth, J.A. III, Allamandola, L.J., et al.: Astrobiology 8, 715 (2008) ADSCrossRefGoogle Scholar
  10. Duquennoy, A., Mayor, M.: Astron. Astrophys. 248, 485 (1991) ADSGoogle Scholar
  11. Dvorak, R.: Österr. Akad. Wiss. Math.-Nat.wiss. 191, 423 (1982) Google Scholar
  12. Eggenberger, A., Udry, S., Mayor, M.: Astron. Astrophys. 417, 353 (2004) ADSCrossRefGoogle Scholar
  13. Gallet, F., Charbonnel, C., Amard, L., Brun, S., Palacios, A., Mathis, S.: Astron. Astrophys. 597, A14 (2017) ADSCrossRefGoogle Scholar
  14. Heller, R., Armstrong, J.: Astrobiology 14, 50 (2014) ADSCrossRefGoogle Scholar
  15. Heller, R., Barnes, R.: Astrobiology 13, 18 (2013) ADSCrossRefGoogle Scholar
  16. Jones, B.W., Underwood, D.R., Sleep, P.N.: Astrophys. J. 622, 1091 (2005) ADSCrossRefGoogle Scholar
  17. Kaltenegger, L.: Annu. Rev. Astron. Astrophys. 55, 433 (2017) ADSCrossRefGoogle Scholar
  18. Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Icarus 101, 108 (1993) ADSCrossRefGoogle Scholar
  19. Kasting, J.F., Catling, D.: Annu. Rev. Astron. Astrophys. 41, 429 (2003) ADSCrossRefGoogle Scholar
  20. Kopparapu, R.K., Ramirez, R., Kasting, J.F., et al.: Astrophys. J. 765, 131 (2013). Erratum: Astrophys. J. 770, 82 (2013) ADSCrossRefGoogle Scholar
  21. Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., et al.: Astrophys. J. 787, L29 (2014) ADSCrossRefGoogle Scholar
  22. Kroupa, P.: Mon. Not. R. Astron. Soc. 322, 231 (2001) ADSCrossRefGoogle Scholar
  23. Kroupa, P.: Science 295, 82 (2002) ADSCrossRefGoogle Scholar
  24. Lammer, H., Bredehöft, J.H., Coustenis, A., et al.: Astron. Astrophys. Rev. 17, 181 (2009) ADSCrossRefGoogle Scholar
  25. Lingam, M., Loeb, A.: Int. J. Astrobiol. 17, 116 (2018) CrossRefGoogle Scholar
  26. Mann, A.W., Gaidos, E., Ansdell, M.: Astrophys. J. 779, 188 (2013) ADSCrossRefGoogle Scholar
  27. Meadows, V.S., Reinhard, C.T., Arney, G.N., et al.: Astrobiology 18, 630 (2018) ADSCrossRefGoogle Scholar
  28. Moorman, S.Y., Quarles, B.L., Wang, Z., Cuntz, M.: Int. J. Astrobiol. 18, 79 (2019) CrossRefGoogle Scholar
  29. Olson, S.L., Schwieterman, E.W., Reinhard, C.T., et al.: Astrophys. J. Lett. 858, L14 (2018) ADSCrossRefGoogle Scholar
  30. Patience, J., White, R.J., Ghez, A.M., et al.: Astrophys. J. 581, 654 (2002) ADSCrossRefGoogle Scholar
  31. Pilat-Lohinger, E., Eggl, S., Bazsó, Á.: Planetary Habitability in Binary Systems. Advances in Planetary Science, vol. 4. World Scientific, Singapore (2019) zbMATHCrossRefGoogle Scholar
  32. Quarles, B., Satyal, S., Kostov, V., Kaib, N., Haghighipour, N.: Astrophys. J. 856, 150 (2018) ADSCrossRefGoogle Scholar
  33. Raghavan, D., Henry, T.J., Mason, B.D., et al.: Astrophys. J. 646, 523 (2006) ADSCrossRefGoogle Scholar
  34. Raghavan, D., McAlister, H.A., Henry, T.J., et al.: Astrophys. J. Suppl. Ser. 190, 1 (2010) ADSCrossRefGoogle Scholar
  35. Ramirez, R.M.: Geosciences 8, 280 (2018) ADSCrossRefGoogle Scholar
  36. Roell, T., Neuhäuser, R., Seifahrt, A., Mugrauer, M.: Astron. Astrophys. 542, A92 (2012) ADSCrossRefGoogle Scholar
  37. Schwieterman, E.W., Kiang, N.Y., Parenteau, M.N., et al.: Astrobiology 18, 663 (2018) ADSCrossRefGoogle Scholar
  38. Seager, S., Bains, W., Petkowski, J.J.: Astrobiology 16, 465 (2016) ADSCrossRefGoogle Scholar
  39. Underwood, D.R., Jones, B.W., Sleep, P.N.: Int. J. Astrobiol. 2, 289 (2003) CrossRefGoogle Scholar
  40. Wang, Z., Cuntz, M.: Astrophys. J. 873, 113 (2019a) ADSCrossRefGoogle Scholar
  41. Wang, Z., Cuntz, M.: Res. Not. Am. Astron. Soc. 3e, 70 (2019b) ADSGoogle Scholar
  42. Williams, D.M., Pollard, D.: Int. J. Astrobiol. 1, 61 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations