Advertisement

Inhomogeneous perturbations and stability analysis of the Einstein static universe in \(f(R,T)\) gravity

  • 62 Accesses

Abstract

The purpose of this paper is to analyze the existence of static stable Einstein universe using inhomogeneous linear perturbations in the context of \(f(R,T)\) gravity (\(R\) and \(T\) denote the scalar curvature and trace of the stress-energy tensor, respectively). The static and perturbed field equations are constructed for perfect fluid parameterized by linear equation of state parameter. We obtain solutions manifesting the Einstein static state by considering peculiar \(f(R,T)\) forms for vanishing and non-vanishing conservation of the stress-energy tensor. It is observed that stable static Einstein regions exist for both closed as well as open FLRW universe models for an appropriate choice of parameters. We conclude that this theory is efficient for presenting such cosmological solutions leading to emergent universe scenario.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ade, P.A.R., et al.: Astron. Astrophys. 594, A13 (2016)

  2. Alvarenga, F.G., et al.: J. Mod. Phys. 04, 130 (2013)

  3. Atazadeh, K.: J. Cosmol. Astropart. Phys. 06, 020 (2014)

  4. Barrow, J.D., Yamamoto, K.: Phys. Rev. D 85, 083505 (2012)

  5. Barrow, J.D., et al.: Class. Quantum Gravity 20, L155 (2003)

  6. Böhmer, C.G., Lobo, F.S.N.: Phys. Rev. D 79, 067504 (2009)

  7. Böhmer, C.G., Hollenstein, L., Lobo, F.S.N.: Phys. Rev. D 76, 084005 (2007)

  8. Böhmer, C.G., Tamanini, N., Wright, M.: Phys. Rev. D 92, 124067 (2015)

  9. Capozziello, S.: Int. J. Mod. Phys. D 483, 11 (2002)

  10. Deb, D., et al.: Mon. Not. R. Astron. Soc. 485, 5652 (2019)

  11. Eddington, A.S.: Mon. Not. R. Astron. Soc. 90, 668 (1930)

  12. Ellis, G.F.R., Maartens, R.: Class. Quantum Gravity 21, 223 (2004)

  13. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Gravity 21, 233 (2004)

  14. Gasperini, M., Veneziano, G.: Phys. Rep. 373, 1 (2003)

  15. Gergely, L.Á., Maartens, R.: Class. Quantum Gravity 19, 213 (2002)

  16. Goswami, R., Goheer, N., Dunsby, P.K.S.: Phys. Rev. D 78, 044011 (2008)

  17. Harko, T., Lobo, F.S.N.: Extensions of \(f(R)\) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory. Cambridge University Press, Cambridge (2019)

  18. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

  19. Harrison, E.R.: Rev. Mod. Phys. 39, 862 (1967)

  20. Huang, H., Wu, P., Yu, H.: Phys. Rev. D 89, 103521 (2014)

  21. Huang, H., Wu, P., Yu, H.: Phys. Rev. D 91, 023507 (2015)

  22. Jamil, M., Momeni, D., Myrzakulov, R.: Chin. Phys. Lett. 29, 109801 (2012)

  23. Khoury, J., Steinhardt, P.J., Turok, N.: Phys. Rev. Lett. 92, 031302 (2004)

  24. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Elmsford (1971)

  25. Li, J.T., Lee, C.C., Geng, C.Q.: Eur. Phys. J. C 73, 2315 (2013)

  26. Maurya, S.K., et al.: Phys. Rev. D 100, 044014 (2019)

  27. Moraes, P.H.R.S.: Eur. Phys. J. C 75, 168 (2015)

  28. Mulryne, D.J., et al.: Phys. Rev. D 71, 123512 (2005)

  29. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

  30. Noureen, I., Zubair, M.: Eur. Phys. J. C 75, 62 (2015)

  31. Seahra, S.S., Böhmer, C.G.: Phys. Rev. D 79, 064009 (2009)

  32. Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 044048 (2013)

  33. Shabani, H., Ziaie, A.H.: Eur. Phys. J. C 77, 31 (2017)

  34. Sharif, M., Ikram, A.: Int. J. Mod. Phys. D 26, 1750084 (2017)

  35. Sharif, M., Ikram, A.: Astrophys. Space Sci. 363, 178 (2018)

  36. Sharif, M., Ikram, A.: Eur. Phys. J. Plus 26, 1750084 (2019)

  37. Sharif, M., Siddiqa, A.: Int. J. Mod. Phys. D 27, 1850065 (2018)

  38. Sharif, M., Waseem, A.: Gen. Relativ. Gravit. 50, 78 (2018a)

  39. Sharif, M., Waseem, A.: Eur. Phys. J. C 50, 78 (2018b)

  40. Sharif, M., Waseem, A.: Mod. Phys. Lett. A 33, 1850216 (2018c)

  41. Sharif, M., Waseem, A.: Eur. Phys. J. Plus 133, 160 (2018d)

  42. Sharif, M., Waseem, A.: Int. J. Mod. Phys. D 28, 1950033 (2019a)

  43. Sharif, M., Waseem, A.: Astrophys. Space Sci. 364, 189 (2019b)

  44. Sharif, M., Zubair, M.: J. Cosmol. Astropart. Phys. 03, 028 (2012)

  45. Sharif, M., Zubair, M.: J. Exp. Theor. Phys. 117, 248 (2013a)

  46. Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 014002 (2013b)

  47. Sharif, M., Zubair, M.: Gen. Relativ. Gravit. 46, 1723 (2014a)

  48. Sharif, M., Zubair, M.: Astrophys. Space Sci. 349, 457 (2014b)

  49. Sharif, M., Rani, S., Myrzakulov, R.: Eur. Phys. J. Plus 128, 123 (2013)

Download references

Acknowledgement

One (AW) of us would like to thank the Higher Education Commission, Islamabad, Pakistan for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Phase-II, Batch-III.

Author information

Correspondence to M. Sharif.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Waseem, A. Inhomogeneous perturbations and stability analysis of the Einstein static universe in \(f(R,T)\) gravity. Astrophys Space Sci 364, 221 (2019) doi:10.1007/s10509-019-3711-0

Download citation

Keywords

  • Einstein universe
  • Stability analysis
  • \(f(R,T)\) gravity