Advertisement

Low thrust Earth–Moon transfer trajectories via lunar capture set

  • 58 Accesses

Abstract

A cislunar cargo spacecraft with low-thrust propulsion traveling between the Earth and the Moon is essential for sustainable, long-term manned lunar exploration. In low-thrust Earth–Moon transfer (LTEMT), lunar capture is the primary prerequisite for spacecraft subject to the circular restricted three-body model. Therefore, this study identifies sufficient conditions for lunar capture, which are determined by the Jacobi integral and Hill’s region. This paper proposes a guidance scheme that includes thrust direction, thrust efficiency, and a five-stage flight control sequence based on the variation of the Jacobi integral. The LTEMT problem is then converted to an initial value problem of a differential equation with three parameters. Lunar capture set theories (LCSTs), which are convenient for identifying lunar capture sets, are presented and proved according to the continuous properties of the ordinary differential equation. Finally, the solutions of the LTEMT trajectories departing from a geosynchronous orbit with an altitude of approximately 35,827 km are discussed for different thrust accelerations and cut-off values of the thrust efficiency. The robustness is analyzed assuming that navigation and switching time errors are present to demonstrate the adaptability of this method. The results reveal that the proposed guidance scheme and LCSTs can provide technical support for future cislunar cargo missions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–206 (1998). https://doi.org/10.2514/2.4231

  2. Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the Moon. SIAM J. Appl. Dyn. Syst. 2(2), 144–170 (2003). https://doi.org/10.1137/S1111111102409080

  3. Caillau, J.B., Daoud, B., et al.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114, 137–150 (2012). https://doi.org/10.1007/s10569-012-9443-x

  4. Chi, Z.M., Li, H.Y., et al.: Power-limited low-thrust trajectory optimization with operation point detection. Astrophys. Space Sci. 363, 122 (2018). https://doi.org/10.1007/s10509-018-3344-8

  5. Chi, Z.M., Yang, H.W., et al.: Homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Astrophys. Space Sci. 362, 216 (2017). https://doi.org/10.1007/s10509-017-3196-7

  6. Crusan, J.C., Smith, R.M., et al.: Deep space gateway concept: extending human presence into cislunar space. In: 2018 IEEE Aerospace Conference, Big Sky, MT, 3–10 March (2018). https://doi.org/10.1109/AERO.2018.8396541

  7. D’Souza, C., Crain, T., et al.: In: Orion Cislunar Guidance and Navigation, AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, 20–23 August (2007). https://doi.org/10.2514/6.2007-6681

  8. Gao, Y.F., Wang, Z.K., et al.: Analytical design methods for transfer trajectories between the Earth and the Lunar Orbital Station. Astrophys. Space Sci. 363, 206 (2018). https://doi.org/10.1007/s10509-018-3426-7

  9. Gao, Y.: Earth–Moon trajectory optimization using solar electric propulsion. Chin. J. Aeronaut. 20, 452–463 (2007). https://doi.org/10.1016/s1000-9361(07)60067-3

  10. Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of multiple revolution low-thrust Earth-orbit transfers. J. Spacecr. Rockets 52(3), 289–303 (2015). https://doi.org/10.2514/1.A33187

  11. Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of low-thrust Earth-orbit transfers with eclipsing. J. Guid. Control Dyn. 53(2), 711–727 (2016). https://doi.org/10.2514/1.A33416

  12. Haberkorn, T., Martinon, P.: Low-thrust minimum-fuel orbital transfer: a homotopic approach. J. Guid. Control Dyn. 27(6), 1046–1060 (2004). https://doi.org/10.2514/1.4022

  13. Herman, A.L., Conway, B.A.: Optimal low-thrust Earth–Moon orbit transfer. J. Guid. Control Dyn. 21(1), 141–147 (1998). https://doi.org/10.2514/2.4210

  14. Hoffman, D.J., Kerslake, T.W., et al.: Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration. NASA/TM-2011-217281 (2011)

  15. Hsu, S.B.: Ordinary Differential Equations with Applications, pp. 33–34. World Scientific, Singapore (2013). ISBN-13: 978-9814452908

  16. Jagannatha, B.B., Bouvier, J.H., et al.: Preliminary design of low-energy, low thrust transfers to halo orbits using feedback control. J. Guid. Control Dyn. 42, 2 (2018). https://doi.org/10.2514/1.G003759

  17. Jiang, F.H.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dyn. 35(1), 245–257 (2012). https://doi.org/10.2514/1.52476

  18. Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth–Moon trajectories. J. Guid. Control Dyn. 18(4), 830–837 (1995). https://doi.org/10.2514/3.21466

  19. Lee, D.H., Bang, H., et al.: Efficient initial costates estimation for optimal spiral orbit transfer trajectories design. J. Guid. Control Dyn. 32(6), 1943–1947 (2009). https://doi.org/10.2514/1.44550

  20. Lee, D.H., Bang, H., et al.: Optimal Earth–Moon trajectory design using new initial costate estimation method. J. Guid. Control Dyn. 35(5), 1671–1675 (2012). https://doi.org/10.2514/1.55863

  21. Mammarella, M., Vernicari, P.M., et al.: How the Lunar Space Tug can support the cislunar station. Acta Astronaut. 154, 181–194 (2019). https://doi.org/10.1016/j.actaastro.2018.04.032

  22. McGuire, M.L., Burke, L.M., et al.: Low thrust cis-lunar transfers using a 40 kw-class. In: Solar Electric Propulsion Spacecraft, AAS/AIAA Astrodynamics Specialist Conference 2017, Stevenson, WA, August (2017)

  23. Mengali, G., Quarta, A.A.: Optimization of biimpulsive trajectories in the Earth–Moon restricted three-body system. J. Guid. Control Dyn. 28(2), 209–216 (2005). https://doi.org/10.2514/1.7702

  24. Mercer, C.R., McGuire, M.L., et al.: Solar Electric Propulsion Concepts for Human Space Exploration. NASA/TM-2016-218921 (2016). https://doi.org/10.2514/6.2015-4521

  25. Oshima, K., Campagnola, S.: Global search for low-thrust transfers to the Moon in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 128, 303–322 (2017). https://doi.org/10.1007/s10569-016-9748-2

  26. Ozimek, M.T., Howell, K.C.: Low-thrust transfers in the Earth–Moon system, including applications to libration point orbits. J. Guid. Control Dyn. 33(2), 533–549 (2010). https://doi.org/10.2514/1.43179

  27. Pan, B.F., Pan, X., et al.: A new probability-one homotopy method for solving minimum-time low-thrust orbital transfer problems. Astrophys. Space Sci. 363, 198 (2018). https://doi.org/10.1007/s10509-018-3420-0

  28. Pérez-Palau, D., Epenoy, R.: Fuel optimization for low-thrust Earth–Moon transfer via indirect optimal control. Celest. Mech. Dyn. Astron. 130, 21 (2018). https://doi.org/10.1007/s10569-017-9808-2

  29. Petropoulos, A.E., Longuski, J.M.: Shape-based algorithm for automated design of low-thrust, gravity-assist trajectories. J. Spacecr. Rockets 41(5), 787–796 (2004). https://doi.org/10.2514/1.13095

  30. Pierson, B.L., Kluever, C.A.: Three-stage approach to optimal low-thrust Earth–Moon trajectories. J. Guid. Control Dyn. 17(6), 1275–1282 (1994). https://doi.org/10.2514/3.21344

  31. Song, Y.J., Park, S.Y.: A lunar cargo mission design strategy using variable low thrust. Adv. Space Res. 43, 1391–1406 (2009). https://doi.org/10.1016/j.asr.2009.01.020

  32. Taheri, E., Abdelkhalik, O.: Fast initial trajectory design for low-thrust restricted-three-body problems. J. Guid. Control Dyn. 38(11), 2146–2160 (2015). https://doi.org/10.2514/1.G000878

  33. Taheri, E., Abdelkhalik, O.: Initial three-dimensional low-thrust trajectory design. Adv. Space Res. 57, 889–903 (2016). https://doi.org/10.1016/j.asr.2015.11.034

  34. Taheri, E., Kolmanovsky, I.: Shaping low-thrust trajectories with thrust-handling feature. Adv. Space Res. 61, 879–890 (2018). https://doi.org/10.1016/j.asr.2017.11.006

  35. Woolley, R.G., Baker, J.D., et al.: Cargo logistics for a notional Mars base using solar electric propulsion. Acta Astronaut. 156, 51–57 (2019). https://doi.org/10.1016/j.actaastro.2018.08.026

  36. Zhang, C., Topputo, F., et al.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control Dyn. 38(8), 1501–1509 (2015). https://doi.org/10.2514/1.G001080

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (no. 11572168 and 11872034).

Author information

Correspondence to Zhaokui Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, Z. & Zhang, Y. Low thrust Earth–Moon transfer trajectories via lunar capture set. Astrophys Space Sci 364, 219 (2019). https://doi.org/10.1007/s10509-019-3708-8

Download citation

Keywords

  • Cargo spacecraft
  • Low thrust
  • Earth–Moon transfer
  • Lunar capture set theory
  • Jacobi integral