Advertisement

Astrophysics and Space Science

, 364:211 | Cite as

Seasonal variations of the electrostatic potential near auroral low latitudes

  • Rima Mebrek
  • Mourad DjebliEmail author
  • Rachid Fermous
Original Article
  • 34 Downloads

Abstract

Based on the plasma expansion model, the mapping of ionospheric electrostatic potential (field) is derived at the first moments of sunrise and for different seasons, near auroral low latitude regions. For that purpose we considered an ionospheric altitude where one ion species is dominant which is \(\mbox{O}^{+}\) (at \(\sim400~\mbox{km}\)). Fluid equations are transformed into a simplified form by using quasi-neutrality assumption along with a self-similar approach. The qualitative variations of the electrostatic potential during different seasons show that the plasma dynamics depends on the solar activities, included through heavy species collision terms as well as the universal time. The negative electrostatic potential is established at the earlier stages during hotter seasons, while important drops are seen in the cold season.

Keywords

Ionospheres Expansion Ionization 

Notes

References

  1. Blelly, P.-L., Lathuillère, C., Emery, B., Lilensten, J., Fontanari, J., Alcaydé, D.: Ann. Geophys. 23, 419 (2005) ADSCrossRefGoogle Scholar
  2. Buonsanto, M.J.: Space Sci. Rev. 88, 563 (1999).  https://doi.org/10.1023/a:1005107532631 ADSCrossRefGoogle Scholar
  3. Chang, T.: Eos Trans. AGU 68(8), 108 (1987) ADSCrossRefGoogle Scholar
  4. Chiu, Y.T., Schulz, M.: J. Geophys. Res. 83, 629 (1978).  https://doi.org/10.1029/ja083ia02p00629 ADSCrossRefGoogle Scholar
  5. Cnossen, I., Richmond, A.D.: J. Atmos. Sol.-Terr. Phys. 70, 1512 (2008).  https://doi.org/10.1016/j.jastp.2008.05.003 ADSCrossRefGoogle Scholar
  6. Degond, P., Parzani, C., Vignal, M.H.: Math. Comput. Model. 38, 1093 (2003).  https://doi.org/10.1016/s0895-7177(03)90109-9 CrossRefGoogle Scholar
  7. Denisenko, V.V.: Russ. J. Phys. Chem. B, Focus Phys. 9, 789 (2015).  https://doi.org/10.1134/s199079311505019x CrossRefGoogle Scholar
  8. Denisenko, V., Rycroft, M., Harrison, R.: Surv. Geophys. 40(1), 1 (2019) ADSCrossRefGoogle Scholar
  9. Drellishak, K.S., Knopp, C.F., Cambel, A.B.: Phys. Fluids 6, 1280 (1963).  https://doi.org/10.1063/1.1706896 ADSCrossRefGoogle Scholar
  10. Fan, Y., Du, X., An, Z., Liu, J., Tan, D., Chen, J.: Acta Geophys. 63(3), 679 (2015).  https://doi.org/10.1515/acgeo-2015-0015 ADSCrossRefGoogle Scholar
  11. Fermous, R., Djebli, M.: Phys. Plasmas 22, 042107 (2015).  https://doi.org/10.1063/1.4917078 ADSCrossRefGoogle Scholar
  12. Foster, J.C.: J. Geophys. Res. 88, 981 (1983).  https://doi.org/10.1029/ja088ia02p00981 ADSCrossRefGoogle Scholar
  13. Gurevich, A.V., Pariĭskaya, L.V., Pitaevskiĭ, L.P.: Sov. Phys. JETP 22, 449 (1966) ADSGoogle Scholar
  14. Haider, S.A., Abdu, M.A., Batista, I.S., Sobral, J.H., Xiaoli, L., Esa, K., Maguire, W.C., Verigin, M.I., Singh, V.: J. Geophys. Res. Space Phys. 114(A3), 03311 (2009).  https://doi.org/10.1029/2008JA013709 ADSCrossRefGoogle Scholar
  15. Hazra, P., Islam, T.: Lect. Notes Electr. Eng. 335, 185 (2015).  https://doi.org/10.1007/978-81-322-2274-3-23 CrossRefGoogle Scholar
  16. Kelley, M.C.: The Earth’s Electric Field: Sources from Sun to Mud. Elsevier, Waltham (2014) Google Scholar
  17. Lee, J., Lee, E., Lee, J., Kim, K.-H., Seon, J., Lee, D.-H., Jin, H., Kim, E.-H., Jeon, H.-J., Lim, S.-B., et al.: J. Astron. Space Sci. 31(4), 311 (2014) ADSCrossRefGoogle Scholar
  18. Makhlouf, S., Djebli, M.: Acta Geophys. 67, 1671 (2019).  https://doi.org/10.1007/s11600-019-00358-3 ADSCrossRefGoogle Scholar
  19. Markson, R., Price, C.: Atmos. Res. 51(3–4), 309 (1999) CrossRefGoogle Scholar
  20. Mora, P.: Phys. Rev. Lett. 90, 185002 (2003).  https://doi.org/10.1103/physrevlett.90.185002 ADSCrossRefGoogle Scholar
  21. Nagy, A.F., Balogh, A., Cravens, T.E., Mendillo, M., Mueller-Wodarg, I. (eds.): Comparative Aeronomy, 1st edn. Space Sciences Series of ISSI 29. Springer, New York (2009) Google Scholar
  22. Park, C.G.: J. Geophys. Res. 81, 168 (1976).  https://doi.org/10.1029/ja081i001p00168 ADSCrossRefGoogle Scholar
  23. Rishbeth, H.: Rev. Geophys. 6, 33 (1968).  https://doi.org/10.1029/rg006i001p00033 ADSCrossRefGoogle Scholar
  24. Rishbeth, H., Garriott, O.K.: Introduction to Ionospheric Physics. International Geophysics, vol. 14. Academic Press, New York (1969) CrossRefGoogle Scholar
  25. Rycroft, M.J., Odzimek, A.: In: 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, New York (2011).  https://doi.org/10.1109/ursigass.2011.6050943 CrossRefGoogle Scholar
  26. Ryu, K., Chae, J.-S., Lee, E., Parrot, M.: J. Atmos. Sol.-Terr. Phys. 121, 110 (2014).  https://doi.org/10.1016/j.jastp.2014.10.003 ADSCrossRefGoogle Scholar
  27. Samir, U., Wright, K.H., Stone, N.H.: Rev. Geophys. 21, 1631 (1983).  https://doi.org/10.1029/rg021i007p01631 ADSCrossRefGoogle Scholar
  28. Schunk, R., Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. Cambridge Atmospheric and Space Science Series. CUP, Cambridge (2009) CrossRefGoogle Scholar
  29. Schunk, R.W., Szuszczewicz, E.P.: J. Geophys. Res. 96, 1337 (1991).  https://doi.org/10.1029/90ja02345 ADSCrossRefGoogle Scholar
  30. Singh, N., Schunk, W.: J. Geophys. Res. Space Phys. 87, 9154 (1982).  https://doi.org/10.1029/ja087ia11p09154 ADSCrossRefGoogle Scholar
  31. Stening, R.J.: Planet. Space Sci. 21, 1897 (1973).  https://doi.org/10.1016/0032-0633(73)90119-0 ADSCrossRefGoogle Scholar
  32. Watanabe, S., Oyama, K.I., Abdu, M.A.: J. Geophys. Res. 100, 14581 (1995).  https://doi.org/10.1029/95ja01356 ADSCrossRefGoogle Scholar
  33. Zhang, X., Zhao, S., Song, R., Zhai, D.: Adv. Space Res. 63(11), 3536 (2019).  https://doi.org/10.1016/j.asr.2019.02.008 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Physics, Theoretical Physics LaboratoryUSTHBAlgiersAlgeria
  2. 2.Faculté des Sciences et de la TechnologieUniversite Djilali Bounaama Route de Theniet-el-HadKhemis MilianaAlgeria

Personalised recommendations