Astrophysics and Space Science

, 364:197 | Cite as

The eruptive latitude of the solar flares during the Carrington rotations (CR1986-CR2195)

  • Ramy MawadEmail author
  • Walid Abdel-Sattar
Original Article


In this study, we are investigating the solar flare events during each Carrington rotation in the period 2002–2017. We studied the relationship between solar flare event location and solar cycle progress (phases). The solar flare events are tending to accumulate around a specific latitude line in the southern and northern hemispheres of the solar disk, which we call the “eruptive latitude”. The eruptive latitude is migrating towards the solar equator during the declining phase and away from the solar equator during the ascending phase. The eruptive latitude is consistent with the sunspot butterfly diagram. We found the suitable equation describing the relationship between the eruptive latitude \(\varphi \) and the Carrington rotation number \(\mathit{CR}\) using sinusoidal summation function.


Sun Solar activity Solar flare Solar rotation Carrington rotation 



  1. Abdel-Sattar, W., Mawad, R., Moussas, X.: Study of solar flares’ latitudinal distribution during the solar period 2002–2017: GOES and RHESSI data comparison. Adv. Space Res. 62(9), 2701–2707 (2018). ADSCrossRefGoogle Scholar
  2. Baranyi, T., Győri, L., Ludmány, A.: On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol. Phys. 291, 3081–3102 (2016) ADSCrossRefGoogle Scholar
  3. Bartels, J.: Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933. Terr. Magn. Atmos. Electr. 39(3), 201–202 (1934). CrossRefGoogle Scholar
  4. Carrington, R.C.: Observations of the Spots on the Sun p. 221, 244 (1863) Google Scholar
  5. Cliver, E.W., Dietrich, W.F.: The 1859 space weather event revisited: Limits of extreme activity. J. Space Weather Space Clim. 3, A31 (2013) ADSCrossRefGoogle Scholar
  6. Cliver, E.W., Svalgaard, L.: The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys. 224(1–2), 407–422 (2004). ADSCrossRefGoogle Scholar
  7. Curto, J.J., Castell, J., Del Moral, F.: Sfe: Waiting for the big one. J. Space Weather Space Clim. 6, A23 (2016) CrossRefGoogle Scholar
  8. Gnevyshev, M.N.: On the 11-years cycle of solar activity. Sol. Phys. 1(1), 107–120 (1967). ADSCrossRefGoogle Scholar
  9. Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res. Space Phys. 110(A9), A09S15 (2005) ADSGoogle Scholar
  10. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: Properties of ground level enhancement events and the associated solar eruptions during Solar Cycle 23. Space Sci. Rev. 171, 23–60 (2012) ADSCrossRefGoogle Scholar
  11. Győri, L., Ludmány, A., Baranyi, T.: Comparative analysis of Debrecen sunspot catalogues. Mon. Not. R. Astron. Soc. 465, 1259–1273 (2017) ADSCrossRefGoogle Scholar
  12. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665–670 (2003). ADSCrossRefGoogle Scholar
  13. Hayakawa, H., Ebihara, Y., Hand, D.P., et al.: Low-latitude Aurorae during the extreme space weather events in 1859. Astrophys. J. 869, 57 (2018) ADSCrossRefGoogle Scholar
  14. Hayakawa, H., Ebihara, Y., Cliver, E.W., et al.: The extreme space weather event in September 1909. Mon. Not. R. Astron. Soc. 484, 4083–4099 (2019a) ADSCrossRefGoogle Scholar
  15. Hayakawa, H., Ebihara, Y., Willis, D.M., Toriumi, S., Iju, T., Hattori, K., et al.: Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms around the Carrington Event in 1859. Space Weather 17 (2019).
  16. Kopp, G., Lawrence, G., Rottman, G.: The Total Irradiance Monitor (TIM): Science results. Sol. Phys. 20(1–2), 129–139 (2005). ADSCrossRefGoogle Scholar
  17. Li, K.J., Yun, H.S., Gu, X.M.: Hemispheric variation in solar activity. Astrophys. J. 554, L115–L117 (2001a). ADSCrossRefGoogle Scholar
  18. Li, K.J., Yun, H.S., Gu, X.M.: Latitude migration of sunspot groups. Astron. J. 122(4), 2115–2117 (2001b). ADSCrossRefGoogle Scholar
  19. Loomis, E.: Am. J. Sci. Arts (2) 28, 385 (1859) Google Scholar
  20. Mahrous, A., Shaltout, M., Beheary, M.M., Mawad, R., Youssef, M.: CME-flare association during the 23rd solar cycle. Adv. Space Res. 43(7), 1032–1035 (2009). ADSCrossRefGoogle Scholar
  21. Mawad, R., Farid, H.M., Youssef, M., Yousef, S.: Empirical CME-SSC listing model. J. Mod. Trends Phys. R. 14, 130–136 (2014). CrossRefGoogle Scholar
  22. Mawad, R., Shaltout, M., Youssef, M., Yousef, S., Ewaida, M.: Filaments disappearance in relation to coronal mass ejections during the Solar Cycle 23. Adv. Space Res. 55(2), 688–695 (2015). ADSCrossRefGoogle Scholar
  23. Norton, A.A., Raouafi, N.-E.: The tilted solar dipole: Coronal streamer and polar cap geometry observed near solar minimum. In: Proceedings of the Conference Held 16-20 April 2007 at the National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA. Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series, vol. 383, p. 405. Astronomical Society of the Pacific, San Francisco (2007). Google Scholar
  24. Pandey, K.K., Yellaiah, G., Hiremath, K.M.: Latitudinal distribution of soft X-ray flares and disparity in butterfly diagram. Astrophys. Space Sci. 356(2), 215–224 (2015). ADSCrossRefGoogle Scholar
  25. Papagiannis, M.D., Zerefos, C.S., Repapis, C.C.: The time-latitude distribution of solar flares accompanied by type IV radio bursts during the period 1956 to 1969. Sol. Phys. 27(1), 208–216 (1972). ADSCrossRefGoogle Scholar
  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992) zbMATHGoogle Scholar
  27. Schrijver, C.J., Siscoe, G.L. (eds.): Heliophysics: Space Storms and Radiation: Causes and Effects p. 375. Cambridge University Press, Cambridge (2010). ISBN 1107049040. CrossRefGoogle Scholar
  28. Stewart, B.: On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at the Kew Observatory. Philos. Trans. R. Soc. Lond. 151, 423–430 (1861). ADSCrossRefGoogle Scholar
  29. Thompson, W.T.: Coordinate systems for solar image data. Astron. Astrophys. 449(2), 791–803 (2006). ADSCrossRefGoogle Scholar
  30. Tlatov, A.G., Makarova, V.V., Skorbezh, N.N., Muñoz Jaramillo, A.: Kislovodsk Mountain Astronomical Station (KMAS) Sunspot Group Data v2 (Harvard Dataverse) (2017).
  31. Usoskin, I.G., Kovaltsov, G.A.: Occurrence of extreme solar particle events: Assessment from historical proxy data. Astrophys. J. 757, 92 (2012) ADSCrossRefGoogle Scholar
  32. Wilson, R.M.: On the distribution of sunspot cycle periods. J. Geophys. Res. 92, 10101–10104 (1987). NASA-supported research. ADSCrossRefGoogle Scholar
  33. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: On the behavior of the sunspot cycle near minimum. J. Geophys. Res. 101(A9), 19967–19972 (1996). ADSCrossRefGoogle Scholar
  34. Youssef, M., Mawad, R., Shaltout, M.: A statistical study of post-flare-associated CME events. Adv. Space Res. 51(7), 1221–1229 (2013). ADSCrossRefGoogle Scholar
  35. Zharkova, V.V., Zharkov, S.I.: Latitudinal and longitudinal distributions of sunspots and solar flare occurrence in the Cycle 23 from the solar feature catalogues. In: Marsch, E., Tsinganos, K., Marsden, R., Conroy, L. (eds.) Proceedings of the Second Solar Orbiter Workshop. ESA-SP 641. European Space Agency, Noordwijk (2007). ISBN 92-9291-205-2. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Astronomy & Meteorology Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Astronomy, Space Science & Meteorology Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations