Advertisement

Astrophysics and Space Science

, 364:190 | Cite as

Kaluza-Klein dark energy model in Lyra manifold in the presence of massive scalar field

  • Y. AdityaEmail author
  • K. Deniel Raju
  • V. U. M. Rao
  • D. R. K. Reddy
Original Article
  • 15 Downloads

Abstract

In this investigation we intend to study the dynamics of an anisotropic dark energy cosmological model in the presence of a massive scalar field in a modified Riemannian manifold proposed by Lyra (Math. Z. 54:52, 1951) in the background of a five dimensional Kaluza-Klein space time. We solve the Einstein field equations using some physically significant conditions and present a deterministic dark energy cosmological model. We use here the time dependent displacement vector field of the Lyra manifold. All the dynamical parameters of the model, namely, average Hubble parameter, anisotropy parameter, equation of state parameter, dark energy density, deceleration parameter and statefinders are evaluated for our model and their physical relevance to modern cosmology is discussed in detail.

Keywords

Kaluza-Klein model DE model Lyra manifold Massive scalar meson field 

Notes

Acknowledgements

The authors are very much grateful to the reviewer for constructive comments which certainly improved the quality and presentation of the paper.

Compliance with ethical standards

The authors declare that they have no potential conflict and will abide by the ethical standards of this journal.

References

  1. Ade, P.A.R., et al.: Astron. Astrophys. 571, A16 (2014) CrossRefGoogle Scholar
  2. Aditya, Y., Reddy, D.R.K.: Astrophys. Space Sci. 363, 207 (2018a) ADSCrossRefGoogle Scholar
  3. Aditya, Y., Reddy, D.R.K.: Eur. Phys. J. C 78, 619 (2018b) ADSCrossRefGoogle Scholar
  4. Aditya, Y., Reddy, D.R.K.: Astrophys. Space Sci. 364, 3 (2019) ADSCrossRefGoogle Scholar
  5. Aditya, Y., et al.: Astrophys. Space Sci. 361, 56 (2016) ADSMathSciNetCrossRefGoogle Scholar
  6. Appelquist, T., et al.: Modern Kaluza-Klein Theories. Addison-Wesley, Reading (1987) zbMATHGoogle Scholar
  7. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) ADSMathSciNetCrossRefGoogle Scholar
  8. Collins, C.B., et al.: Gen. Relativ. Gravit. 12, 805 (1980) ADSCrossRefGoogle Scholar
  9. Copeland, E.J., et al.: Int. J. Mod. Phys. D 15, 1753 (2006) ADSCrossRefGoogle Scholar
  10. Gron, O.: Astron. Astrophys. 193, 1 (1988) ADSMathSciNetGoogle Scholar
  11. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011) ADSCrossRefGoogle Scholar
  12. Hinshaw, G.F., et al.: Astrophys. J. Suppl. Ser. 208, 19 (2013) ADSCrossRefGoogle Scholar
  13. Jawad, A.: Astrophys. Space Sci. 353, 691 (2014) ADSCrossRefGoogle Scholar
  14. Jawad, A.: Astrophys. Space Sci. 357, 19 (2015) ADSCrossRefGoogle Scholar
  15. Johri, V.B., Desikan, K.: Gen. Relativ. Gravit. 26, 1217 (1994) ADSCrossRefGoogle Scholar
  16. Johri, V.B., Sudharsan, R.: Aust. J. Phys. 42, 215 (1989) ADSCrossRefGoogle Scholar
  17. Kaluza, T.: Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 1, 966 (1921) Google Scholar
  18. Kantowski, R., Sachs, R.K.: J. Math. Phys. 7, 433 (1966) ADSCrossRefGoogle Scholar
  19. Kiran, M., et al.: Astrophys. Space Sci. 354, 577 (2014) ADSCrossRefGoogle Scholar
  20. Klein, O.: Z. Phys. 37, 895 (1926) ADSCrossRefGoogle Scholar
  21. Kristian, J., Sachs, R.K.: Astrophys. J. 143, 379 (1966) ADSMathSciNetCrossRefGoogle Scholar
  22. Lyra, G.: Math. Z. 54, 52 (1951) MathSciNetCrossRefGoogle Scholar
  23. Naidu, R.L.: Can. J. Phys. 97, 330 (2018) ADSCrossRefGoogle Scholar
  24. Naidu, K.D., et al.: Astrophys. Space Sci. 363, 158 (2018a) CrossRefGoogle Scholar
  25. Naidu, K.D., et al.: Eur. Phys. J. Plus 133, 303 (2018b) CrossRefGoogle Scholar
  26. Naidu, R.L., et al.: Heliyon 5, 01645 (2019) CrossRefGoogle Scholar
  27. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003) ADSCrossRefGoogle Scholar
  28. Nojiri, S., et al.: Phys. Rev. D 71, 123509 (2005) ADSCrossRefGoogle Scholar
  29. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  30. Rao, V.U.M., et al.: Prespacetime J. 6, 596 (2015) Google Scholar
  31. Rao, V.U.M., et al.: Results Phys. 10, 469 (2018) ADSCrossRefGoogle Scholar
  32. Reddy, D.R.K., Aditya, Y.: Int. J. Phys.: Stud. Res. 1(1), 43 (2018) Google Scholar
  33. Reddy, D.R.K., Lakshmi, G.V.V.: Astrophys. Space Sci. 354, 633 (2014) ADSCrossRefGoogle Scholar
  34. Reddy, D.R.K., Ramesh, G.: Int. J. Cosml. Astron. Astrophys. 1, 67 (2019) CrossRefGoogle Scholar
  35. Reddy, D.R.K., et al.: Eur. Phys. J. Plus 129, 96 (2014) CrossRefGoogle Scholar
  36. Reddy, D.R.K., et al.: J. Dyn. Syst. Geom. Theories 17, 1 (2019) MathSciNetCrossRefGoogle Scholar
  37. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  38. Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986) ADSCrossRefGoogle Scholar
  39. Sahni, V., et al.: JETP Lett. 77, 201 (2003) ADSCrossRefGoogle Scholar
  40. Sahoo, P.K., et al.: Indian J. Phys. 94, 485 (2016) ADSCrossRefGoogle Scholar
  41. Santhi, M.V., et al.: Afr. Rev. Phys. 11, 0029 (2016a) Google Scholar
  42. Santhi, M.V., et al.: Can. J. Phys. 94, 578 (2016b) ADSCrossRefGoogle Scholar
  43. Santhi, M.V., et al.: Can. J. Phys. 95, 136 (2017) ADSCrossRefGoogle Scholar
  44. Sharma, U.K., Pradhan, A.: Mod. Phys. Lett. A 34, 1950101 (2019) ADSCrossRefGoogle Scholar
  45. Singh, J.K.: Nuovo Cimento B 120, 1259 (2005) ADSGoogle Scholar
  46. Singh, C.P., Kumar, P.: Astrophys. Space Sci. 361, 157 (2016) ADSCrossRefGoogle Scholar
  47. Singh, J.K., Rani, S.: Int. J. Theor. Phys. 54, 545 (2015) CrossRefGoogle Scholar
  48. Thorne, K.S.: Astrophys. J. 148, 51 (1967) ADSCrossRefGoogle Scholar
  49. Wesson, P.S.: Astron. Astrophys. 119, 1 (1983) Google Scholar
  50. Witten, E.: Phys. Lett. B 144, 351 (1984) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsGMR Institute of TechnologyRajamIndia
  2. 2.Department of MathematicsANITS (A)VisakhapatnamIndia
  3. 3.Department of Applied MathematicsAndhra UniversityVisakhapatnamIndia

Personalised recommendations