Planck 2015 constraints on spatially-flat dynamical dark energy models

  • Junpei OobaEmail author
  • Bharat Ratra
  • Naoshi Sugiyama
Original Article


We determine constraints on spatially-flat tilted dynamical dark energy XCDM and \(\phi \)CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the \(\phi \)CDM model is a physically consistent one in which a scalar field \(\phi \) with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard \(\varLambda \)CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-\(\varLambda \)CDM model, with \(\Delta \chi ^{2} = -1.26\ (-1.60)\) for the XCDM (\(\phi \)CDM) model relative to the \(\varLambda \)CDM model. While this is a 1.1\(\sigma \) (1.3\(\sigma \)) improvement over standard \(\varLambda \)CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing \(\sigma _{8}\) constraints.


Cosmic background radiation Cosmological parameters Large-scale structure of universe Observations 



We thank G. Horton-Smith and C.-G. Park for helpful discussions. We thank the referee for comments that helped us improve the paper. This work is supported by Grants-in-Aid for Scientific Research from JSPS (Nos. 16J05446 (J.O.) and 15H05890 (N.S.)). B.R. is supported in part by DOE grant DE-SC0019038.


  1. Abbott, T.M.C., Abdalla, F.B., Alarcon, A., et al. (DES Collaboration): (2017a). arXiv:1708.01530
  2. Abbott, T.M.C., Abdalla, F.B., Annis, J., et al. (DES Collaboration): (2017b). arXiv:1711.00403
  3. Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (Planck Collaboration): Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 CrossRefGoogle Scholar
  4. Anderson, L., Aubourg, É., Bailey, S., et al.: Mon. Not. R. Astron. Soc. 441, 24 (2014). arXiv:1312.4877 CrossRefADSGoogle Scholar
  5. Aubourg, É., Bailey, S., Bautista, J.E., et al.: Phys. Rev. D 92, 123516 (2015). arXiv:1411.1074 CrossRefADSGoogle Scholar
  6. Audren, B., Lesgourgues, J., Benabed, K., Prunet, S.: J. Cosmol. Astropart. Phys. 1302, 001 (2013). arXiv:1210.7183 CrossRefADSGoogle Scholar
  7. Avsajanishvili, O., Samushia, L., Arkhipova, N.A., Kahniashvili, T.: (2015). arXiv:1511.09317
  8. Avsajanishvili, O., Huang, Y., Samushia, L., Kahniashvili, T.: (2017). arXiv:1711.11465
  9. Beutler, F., Blake, C., Colless, M., et al.: Mon. Not. R. Astron. Soc. 416, 3017 (2011). arXiv:1106.3366 CrossRefADSGoogle Scholar
  10. Blas, D., Lesgourgues, J., Tram, T.: J. Cosmol. Astropart. Phys. 1107, 034 (2011). arXiv:1104.2933 CrossRefADSGoogle Scholar
  11. Brax, P.: Rep. Prog. Phys. 81, 016902 (2018) CrossRefADSGoogle Scholar
  12. Brax, P., Martin, J., Riazuelo, A.: Phys. Rev. D 62, 103505 (2000). arXiv:astro-ph/0005428 CrossRefADSGoogle Scholar
  13. Calabrese, E., Archidiacono, M., Melchiorri, A., Ratra, B.: Phys. Rev. D 86, 043520 (2012). arXiv:1205.6753 CrossRefADSGoogle Scholar
  14. Cao, S.-L., Duan, X.-W., Meng, X.-L., Zhang, T.-J.: Eur. Phys. J. C 78, 313 (2018). arXiv:1712.01703 CrossRefADSGoogle Scholar
  15. Chen, G., Ratra, B.: Astrophys. J. 612, L1 (2004). arXiv:astro-ph/0405636 CrossRefADSGoogle Scholar
  16. Chen, G., Ratra, B.: Publ. Astron. Soc. Pac. 123, 1127 (2011a). arXiv:1105.5206 CrossRefADSGoogle Scholar
  17. Chen, Y., Ratra, B.: Phys. Lett. B 703, 406 (2011b). arXiv:1106.4294 CrossRefADSGoogle Scholar
  18. Chen, Y., Kumar, S., Ratra, B.: Astrophys. J. 835, 86 (2017). arXiv:1606.07316 CrossRefADSGoogle Scholar
  19. Ding, X., Biesiada, M., Cao, S., Li, Z., Zhu, Z.-H.: Astrophys. J. 803, L22 (2015). arXiv:1503.04923 CrossRefADSGoogle Scholar
  20. Farooq, O., Ratra, B.: Astrophys. J. 766, L7 (2013). arXiv:1301.5243 CrossRefADSGoogle Scholar
  21. Farooq, O., Madiyar, F.R., Crandall, S., Ratra, B.: Astrophys. J. 835, 26 (2017). arXiv:1607.03537 CrossRefADSGoogle Scholar
  22. Fixsen, D.J.: Astrophys. J. 707, 916 (2009). arXiv:0911.1955 CrossRefADSGoogle Scholar
  23. Gómez-Valent, A., Solà, J.: Europhys. Lett. 120, 39001 (2017). arXiv:1711.00692 CrossRefADSGoogle Scholar
  24. Gott, J.R.: Nature 295, 304 (1982) CrossRefADSGoogle Scholar
  25. Haridasu, B.S., Luković, V.V., Vittorio, N.: J. Cosmol. Astropart. Phys. 1805, 033 (2018). arXiv:1711.03929 CrossRefADSGoogle Scholar
  26. Hawking, S.W.: Nucl. Phys. B 239, 257 (1984) CrossRefADSGoogle Scholar
  27. Khadka, N., Ratra, B.: (2019). arXiv:1909.01400
  28. Lin, W., Ishak, M.: Phys. Rev. D 96, 083532 (2017). arXiv:1708.09813 CrossRefADSGoogle Scholar
  29. Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985) CrossRefADSGoogle Scholar
  30. Martin, J.: C. R. Phys. 13, 566 (2012). arXiv:1205.3365 CrossRefADSGoogle Scholar
  31. Mitra, S., Choudhury, T.R., Ratra, B.: Mon. Not. R. Astron. Soc. 479, 4566 (2018). arXiv:1712.00018 CrossRefADSGoogle Scholar
  32. Mitra, S., Park, C.-G., Choudhury, T.R., Ratra, B.: Mon. Not. R. Astron. Soc. 487, 5118 (2019). arXiv:1901.09927 CrossRefADSGoogle Scholar
  33. Mukherjee, P., Banday, A.J., Riazuelo, A., Górski, K.M., Ratra, B.: Astrophys. J. 598, 767 (2003). arXiv:astro-ph/0306147 CrossRefADSGoogle Scholar
  34. Ooba, J., Ratra, B., Sugiyama, N.: Astrophys. J. 864, 80 (2018a). arXiv:1707.03452 CrossRefADSGoogle Scholar
  35. Ooba, J., Ratra, B., Sugiyama, N.: Astrophys. J. 869, 34 (2018b). arXiv:1710.03271 CrossRefADSGoogle Scholar
  36. Ooba, J., Ratra, B., Sugiyama, N.: Astrophys. J. 866, 68 (2018c). arXiv:1712.08617 CrossRefADSGoogle Scholar
  37. Park, C.-G., Ratra, B.: Astrophys. J. 868, 83 (2018). arXiv:1807.07421 CrossRefADSGoogle Scholar
  38. Park, C.-G., Ratra, B.: Astrophys. J. 882, 158 (2019a). arXiv:1801.00213 CrossRefADSGoogle Scholar
  39. Park, C.-G., Ratra, B.: Astrophys. Space Sci. 364, 82 (2019b). arXiv:1803.05522 CrossRefADSGoogle Scholar
  40. Park, C.-G., Ratra, B.: Astrophys. Space Sci. 364, 134 (2019c). arXiv:1809.03598 CrossRefADSGoogle Scholar
  41. Park, C.-G., Ratra, B.: (2019d). arXiv:1908.08477
  42. Pavlov, A., Westmoreland, S., Saaidi, K., Ratra, B.: Phys. Rev. D 88, 123513 (2013). arXiv:1307.7399 CrossRefADSGoogle Scholar
  43. Pavlov, A., Farooq, M., Ratra, B.: Phys. Rev. D 90, 023006 (2014). arXiv:1312.5285 CrossRefADSGoogle Scholar
  44. Peebles, P.J.E.: Astrophys. J. 284, 439 (1984) CrossRefADSGoogle Scholar
  45. Peebles, P.J.E., Ratra, B.: Astrophys. J. 325, L17 (1988) CrossRefADSGoogle Scholar
  46. Penton, J., Peyton, J., Zahoor, A., Ratra, B.: Publ. Astron. Soc. Pac. 130, 114001 (2018). arXiv:1808.01490 CrossRefADSGoogle Scholar
  47. Podariu, S., Ratra, B.: Astrophys. J. 532, 109 (2001). arXiv:astro-ph/9910527 CrossRefADSGoogle Scholar
  48. Ratra, B.: Phys. Rev. D 31, 1931 (1985) CrossRefADSMathSciNetGoogle Scholar
  49. Ratra, B.: Phys. Rev. D 40, 3939 (1989) CrossRefADSMathSciNetGoogle Scholar
  50. Ratra, B.: Phys. Rev. D 45, 1913 (1992) CrossRefADSGoogle Scholar
  51. Ratra, B.: Phys. Rev. D 96, 103534 (2017). arXiv:1707.03439 CrossRefADSMathSciNetGoogle Scholar
  52. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988) CrossRefADSGoogle Scholar
  53. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 52, 1837 (1995) CrossRefADSGoogle Scholar
  54. Ratra, B., Vogeley, M.: Publ. Astron. Soc. Pac. 120, 235 (2008). arXiv:0706.1565 CrossRefADSGoogle Scholar
  55. Riess, A.G., Casertano, S., Yuan, W., et al.: (2018). arXiv:1801.01120
  56. Ross, A.J., Samushia, L., Howlett, C., et al.: Mon. Not. R. Astron. Soc. 449, 835 (2015). arXiv:1409.3242 CrossRefADSGoogle Scholar
  57. Ryan, J., Doshi, S., Ratra, B.: Mon. Not. R. Astron. Soc. 480, 759 (2018). arXiv:1805.06408 CrossRefADSGoogle Scholar
  58. Ryan, J., Chen, Y., Ratra, B.: Mon. Not. R. Astron. Soc. 488, 3844 (2019). arXiv:1902.03196 CrossRefADSGoogle Scholar
  59. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Astrophys. J. 793, L4 (2014). arXiv:1406.2209 CrossRefGoogle Scholar
  60. Samushia, L., Ratra, B.: Astrophys. J. 714, 1347 (2010). arXiv:0905.3836 CrossRefADSGoogle Scholar
  61. Samushia, L., Chen, G., Ratra, B.: (2007). arXiv:0706.1963
  62. Sievers, J.L., Hlozek, R.A., Nolta, M.R., et al.: J. Cosmol. Astropart. Phys. 1310, 060 (2013). arXiv:1301.0824 CrossRefADSGoogle Scholar
  63. Solà, J., de Cruz Pérez: (2017). arXiv:1703.08218
  64. Solà, J., Gómez-Valent, A., de Cruz Pérez, J.: Astrophys. J. 811, L14 (2015). arXiv:1506.05793 CrossRefADSGoogle Scholar
  65. Solà, J., Gómez-Valent, A., de Cruz Pérez, J.: Astrophys. J. 836, 43 (2017a). arXiv:1602.02103 CrossRefADSGoogle Scholar
  66. Solà, J., Gómez-Valent, A., de Cruz Pérez, J.: Mod. Phys. Lett. A 32, 1750054 (2017b). arXiv:1610.08965 CrossRefADSGoogle Scholar
  67. Solà, J., Gómez-Valent, A., de Cruz Pérez, J.: Phys. Lett. B 774, 317 (2017c). arXiv:1705.06723 CrossRefADSGoogle Scholar
  68. Solà, J., de Cruz Pérez, J., Gómez-Valent, A.: Europhys. Lett. 121, 39001 (2018). arXiv:1606.00450 CrossRefADSGoogle Scholar
  69. Yashar, M., Bozek, B., Abrahamse, A., Albrecht, A., Barnard, M.: Phys. Rev. D 79, 103004 (2009). arXiv:0811.2253 CrossRefADSGoogle Scholar
  70. Yu, H., Ratra, B., Wang, F.-Y.: Astrophys. J. 856, 3 (2018). arXiv:1711.03437 CrossRefADSGoogle Scholar
  71. Zhai, Z., Blanton, M., Slosar, A., Tinker, J.: Astrophys. J. 850, 183 (2017). arXiv:1705.10031 CrossRefADSGoogle Scholar
  72. Zhang, Y.-C., Zhang, H.-Y., Wang, D.-D., et al.: Res. Astron. Astrophys. 17, 6 (2017). arXiv:1703.08293 CrossRefADSGoogle Scholar
  73. Zhao, G.-B., Raveri, M., Pogosian, L., et al.: Nat. Astron. 1, 627 (2017). arXiv:1701.08165 CrossRefADSGoogle Scholar
  74. Zheng, X., Ding, X., Biesiada, M., Cao, S., Zhu, Z.-H.: Astrophys. J. 825, 17 (2016). arXiv:1604.07910 CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsNagoya UniversityNagoyaJapan
  2. 2.Department of PhysicsKansas State UniversityManhattanUSA
  3. 3.Kobayashi-Maskawa Institute for the Origin of Particles and the UniverseNagoya UniversityNagoyaJapan
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)The University of TokyoChibaJapan

Personalised recommendations