Astrophysics and Space Science

, 364:143 | Cite as

Origin of the cosmological constant

  • J. O. StenfloEmail author
Original Article


The observed value of the cosmological constant corresponds to a time scale that is very close to the current conformal age of the universe. Here we show that this is not a coincidence but is caused by a periodic boundary condition, which only manifests itself when the metric is represented in Euclidian spacetime. The circular property of the metric in Euclidian spacetime becomes an exponential evolution (de Sitter or \(\varLambda \) term) in ordinary spacetime. The value of \(\varLambda \) then gets uniquely linked to the period in Euclidian conformal time, which corresponds to the conformal age of the universe. Without the use of any free model parameters we predict the value of the dimensionless parameter \(\varOmega _{\varLambda }\) to be 67.2%, which is within \(2\sigma \) of the value derived from CMB observations.


Dark energy Cosmology: theory Gravitation Early universe Physical data and processes 



  1. Einstein, A.: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 142 (1917) Google Scholar
  2. Gibbons, G.W., Perry, M.J.: Phys. Rev. Lett. 36, 985 (1976) ADSCrossRefGoogle Scholar
  3. Hawking, S.W.: Nature 248, 30 (1974) ADSCrossRefGoogle Scholar
  4. McCoy, B.M.: arXiv e-prints: hep-th/9403084 (1994)
  5. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973) Google Scholar
  6. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993) Google Scholar
  7. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  8. Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., et al.: arXiv e-prints: 1807.06209v1 [astro-ph.CO] (2018)
  9. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  10. Stenflo, J.O.: arXiv e-prints: 1901.01317v1 [physics.gen-ph] (2019)
  11. Weinberg, S.: Phys. Rev. Lett. 59, 2607 (1987) ADSCrossRefGoogle Scholar
  12. Zee, A.: Quantum Field Theory in a Nutshell, 2nd edn. Princeton University Press, Princeton (2010) zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Particle Physics and AstrophysicsETH ZurichZurichSwitzerland
  2. 2.Istituto Ricerche Solari Locarno (IRSOL)Locarno-MontiSwitzerland

Personalised recommendations