Advertisement

Exploring the effect of various plasma parameters on whistler mode growth rates in the Jovian magnetosphere

  • Shivani Agarwal
  • R. S. PandeyEmail author
  • Christine Jeyaseelan
Original Article
  • 21 Downloads

Abstract

In 1979, after plasma envelope exploration, Voyager 1 and 2 revealed that Jovian magnetosphere consists of an unusual mixture of ions like hydrogen, sulphur, oxygen etc., in similar proportions. The present study observed that the waves in Jovian magnetosphere propagate in whistler-mode, with some similarities to whistler-mode auroral hiss in the Earth’s magnetosphere. The dispersion relation has been deduced and calculated in detail for oblique propagating waves in presence of parallel AC electric field for bi-Maxwellian distribution function. Magnetic field model for different values of latitude at radial distance \(17 R_{J}\) has been reported. By using the method of characteristic solution, relativistic growth rate has been calculated. Data provided by spacecrafts like Pioneer 10 and 11, Voyager 1 and 2, while exploring the magnetosphere of Jupiter, has been used to plot graphs of variation of growth rate for different values of various plasma parameters like temperature anisotropy, angle of wave propagation, AC frequency etc. The effect on growth rate by these plasma parameters is shown by graphs.

Keywords

Whistler mode waves Bi-Maxwellian distribution Relativistic growth rate 

Notes

Acknowledgement

The authors are grateful to the Chairman, Indian Space Research Organization (ISRO), Director and members of PLANEX program, ISRO, for the financial support. We are thankful to Dr. Ashok K. Chauhan (Founder President, Amity University), Dr. Atul Chauhan (President, Amity University) and Dr. Balvinder Shukla (Vice Chancellor, Amity University) for their immense encouragement. We also express our gratitude to the reviewers for their expert comments for the manuscript.

References

  1. Ahirwar, G., Varma, P., Tiwari, M.S.: Electromagnetic ion cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function—particle aspect analysis. Ann. Geophys. 24(7), 1919–1930 (2006) ADSCrossRefGoogle Scholar
  2. Akalin, F., Gurnett, D.A., Averkamp, T.F., Persoon, A.M., Santolik, O., Kurth, W.S., Hospodarsky, G.B.: First whistler observed in the magnetosphere of Saturn. Geophys. Res. Lett. 33, L20107 (2006) ADSCrossRefGoogle Scholar
  3. Bagenal, F.: Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res. 99, 11043–11062 (1994) ADSCrossRefGoogle Scholar
  4. Bagenal, F., Adriani, A., Allegrini, F., Bolton, S.J., Bonfond, B., Bunce, E.J., Connerney, J.E.P., Cowley, S.W.H., Ebert, R.W., Gladstone, G.R., Hansen, C.J., Kurth, W.S., Levin, S.M., Mauk, B.H., McComas, D.J., Paranicas, C.P., Santos-Costa, D., Thorne, R.M., Valek, P., Waite, J.H., Zarka, P.: Magnetospheric science objectives of the Juno mission. Space Sci. Rev. 213(1–4), 219–287 (2017) ADSCrossRefGoogle Scholar
  5. Brice, N.M.: Energetic protons in Jupiter’s radiation belts. In: Proceedings of the Workshop on Jupiter’s Radiation Environment, p. 283. JPL, Pasadena (1972). JPL Tech. Memo. 33-543 Google Scholar
  6. Burke, B.F., Franklin, K.L.: Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955) ADSCrossRefGoogle Scholar
  7. Carr, T.D., Gulkis, S.: The magnetosphere of Jupiter. Annu. Rev. Astron. Astrophys. 7, 577 (1969) ADSCrossRefGoogle Scholar
  8. Clarke, J.T., Hudson, M.K., Yung, Y.L.: The excitation of the far ultraviolet electro glow emissions on Uranus, Saturn, and Jupiter. J. Geophys. Res. 92(A13), 15139–15147 (1987) ADSCrossRefGoogle Scholar
  9. Dory, R.A., Guest, G.E., Harris, E.G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131 (1965) ADSCrossRefGoogle Scholar
  10. Gurnett, D.A., Shaw, R.R., Anderson, R.R., Kurth, W.S.: Whistlers observed by Voyager I: detection of lightning on Jupiter. Geophys. Res. Lett. 6, 511 (1979a) ADSCrossRefGoogle Scholar
  11. Gurnett, D.A., Kurth, W.S., Scarf, F.L.: Plasma wave observations near Jupiter: initial results from Voyager 2. Science 206(4421), 987 (1979b) ADSCrossRefGoogle Scholar
  12. Gurnett, I.A., Scarf, F.L., Kuri, W.S., Shaw, H.R.R., Poynter, R.L.: Determination of Jupiter’s electron density profile from plasma wave observations. J. Geophys. Res. 86, 8199 (1981) ADSCrossRefGoogle Scholar
  13. Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., Kennel, C.F.: Galileo plasma wave observations in the Io plasma torus and near Io. Science 274, 391 (1996) ADSCrossRefGoogle Scholar
  14. Gurnett, D.A., et al.: Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255 (2005) ADSCrossRefGoogle Scholar
  15. Kennel, C.F.: Stably trapped proton limits for Jupiter. In: Beck, A.J. (ed.) Proceedings of the Jupiter Radiation Belt Workshop, p. 347. JPL, Pasadena (1972). JPL Tech. Memo 33-543 Google Scholar
  16. Kumari, J., Pandey, R.S.: Study of VLF wave with relativistic effect in Saturn magnetosphere in the presence of parallel A.C. electric field. Adv. Space Res. 63(7), 2279–2289 (2018) ADSCrossRefGoogle Scholar
  17. Kumari, J., Kaur, R., Pandey, R.S.: Effect of hot injections on electromagnetic ion-cyclotron waves in inner magnetosphere of Saturn. Astrophys. Space Sci. 363, 33 (2018) ADSCrossRefGoogle Scholar
  18. Kurth, W.S., Barbosa, D.D., Gurnett, D.A., Scarf, F.L.: Electrostatic waves in the Jovian magnetosphere. Geophys. Res. Lett. 7(1), 57 (1980) ADSCrossRefGoogle Scholar
  19. Kurth, W.S., Strayer, B.D., Gurnett, D.A., Scarf, F.L.: A summary of whistlers observed by Voyager 1 at Jupiter. Icarus 61(3), 497–507 (1985) ADSCrossRefGoogle Scholar
  20. Maurice, S., Blanc, M., Prangé, R., Sittler, E.C. Jr.: The magnetic field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet. Space Sci. 45(11), 1449–1465 (1997) ADSCrossRefGoogle Scholar
  21. Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Persoon, A.M., Gurnett, D.A., Coates, A.J., Young, D.T.: Analysis of plasma waves observed within local plasma injections seen in Saturn’s magnetosphere. J. Geophys. Res. 113, A05213 (2008a) ADSCrossRefGoogle Scholar
  22. Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Gurnett, D.A., Coates, A.J.: Analysis of plasma waves observed in the inner Saturn magnetosphere. Ann. Geophys. 26, 2631–2644 (2008b) ADSCrossRefGoogle Scholar
  23. Pandey, R.S., Kaur, R.: Oblique electromagnetic electron cyclotron waves for kappa distribution with A.C. field in planetary magnetosphere. Adv. Space Res. 56, 714–724 (2015) ADSCrossRefGoogle Scholar
  24. Podesta, J.J.: Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons. Phys. Plasmas 15, 122902 (2008) ADSCrossRefGoogle Scholar
  25. Sazhin, S.S.: Oblique whistler mode growth and damping in a hot anisotropic plasma. Planet. Space Sci. 36, 663–667 (1988) ADSCrossRefGoogle Scholar
  26. Scarf, F.L., Gurnett, D.A., Kurth, W.S.: Jupiter plasma wave observations: an initial Voyager 1 overview. Science 204, 991 (1979) ADSCrossRefGoogle Scholar
  27. Shklyar, D., Matsumoto, H.: Oblique whistler-mode waves in the inhomogeneous magnetospheric plasma: resonant interactions with energetic charged particles. Surv. Geophys. 30, 55–104 (2009) ADSCrossRefGoogle Scholar
  28. Smith, B.A., Soderblom, L.A., Johnson, T.V., Ingersoll, A.P., Collins, S.A., Shoemaker, E.M., Hunt, G.E., Masursky, H., Carr, M.H., Davies, M.E., Cook, A.F. II, Boyce, J., Danielson, G.E., Owen, T., Sagan, C., Beebe, R.F., Veverka, J., Strom, R.G., Mccauley, J.F., Morrison, D., Briggs, G.A., Suomi, V.E.: The Jupiter system through the eyes of Voyager 1. Science 204, 951 (1979) ADSCrossRefGoogle Scholar
  29. Stix, T.H.: Waves in Plasmas. Springer, New York (1992) Google Scholar
  30. Stone, R.G., Pedersen, B.M., Harvey, C.C., et al.: Ulysses radio and plasma wave observations in the Jupiter environment. Science 257, 1524 (1992) ADSCrossRefGoogle Scholar
  31. Thomsen, M.F., Reisenfeld, D.B., Delapp, D.M., Tokar, R.L., Young, D.T., Crary, F.J., Sittler, E.C., McGraw, M.A., Williams, J.D.: Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010) ADSCrossRefGoogle Scholar
  32. Thorne, R.M., Coroniti, F.V.: A self-consistent model for Jupiter’s radiation belts. In: Proceedings of the Workshop on Jupiter’s Radiation Environment, p. 363 (1972). JPL Tech. Memo. 33-543 Google Scholar
  33. Tokar, R.L., Gurnett, D.A., Bagenal, F.: The proton concentration in the vicinity of the Io plasma torus. J. Geophys. Res. 87, 10395 (1982a) ADSCrossRefGoogle Scholar
  34. Tokar, R.L., Gurnett, D.A., Bagenal, F., Shaw, R.R.: Light ion concentrations in Jupiter’s inner magnetosphere. J. Geophys. Res. 87, 2241 (1982b) ADSCrossRefGoogle Scholar
  35. Warwick, J.W.: Particles and fields near Jupiter. NASA CR-1685 (1970) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shivani Agarwal
    • 1
  • R. S. Pandey
    • 1
    Email author
  • Christine Jeyaseelan
    • 1
  1. 1.Department of Physics, Amity Institute of Applied SciencesAmity UniversityNoidaIndia

Personalised recommendations