Advertisement

Finite scale factor and future singularities

  • L. N. GrandaEmail author
Original Article
  • 15 Downloads

Abstract

The main characteristic of the dark energy is its negative pressure. In a homogeneous and isotropic FRW background, we consider several models for the dark energy fluid, which lead to finite time future singularities of the type I-IV, by introducing the pressure density as a function of the scale factor. This approach gives acceptable behavior of the dark energy equation of state. We give various numerical examples of models with type I-IV singularities, that show very similar late time behavior, making it difficult to determine the type of singularity that would take place in the future.

Keywords

Dark energy Singularities 

Notes

Acknowledgements

This work was supported by Universidad del Valle under project CI 71074 and by COLCIENCIAS grant number 110671250405.

References

  1. Astashenok, A.V., Nojiri, S., Odintsov, S.D., Scherrer, R.J.: Phys. Lett. B 713, 145 (2012). arXiv:1203.1976v1 [gr-qc] ADSCrossRefGoogle Scholar
  2. Bamba, K., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Eur. Phys. J. C 67, 295 (2010). arXiv:0911.4390 [hep-th] ADSCrossRefGoogle Scholar
  3. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 342, 155 (2012). arXiv:1205.3421 [gr-qc] ADSCrossRefGoogle Scholar
  4. Barrow, J.D.: Class. Quantum Gravity 21, L79 (2004a). arXiv:gr-qc/0403084 ADSCrossRefGoogle Scholar
  5. Barrow, J.D.: Class. Quantum Gravity 21, 5619 (2004b). arXiv:gr-qc/0409062 ADSCrossRefGoogle Scholar
  6. Barrow, J.D., Cotsakis, S., Tsokaros, A.: Class. Quantum Gravity 27, 165017 (2010). arXiv:1004.2681 [gr-qc] ADSCrossRefGoogle Scholar
  7. Beltran Jimenez, J., Lazkoz, R., Saez-Gomez, D., Salzano, V.: Eur. Phys. J. C 76, 631 (2016). arXiv:1602.06211 [gr-qc] ADSCrossRefGoogle Scholar
  8. Beltran Jimenez, J., Rubiera-Garcia, D., Saez-Gomez, D., Salzano, V.: Phys. Rev. D 94, 123520 (2016). arXiv:1607.06389 [gr-qc] ADSMathSciNetCrossRefGoogle Scholar
  9. Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 103508 (2011). arXiv:1107.4642v2 [hep-th] ADSCrossRefGoogle Scholar
  10. Brevik, I., Myrzakulov, R., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 86, 063007 (2012). arXiv:1208.4770 [hep-th] ADSCrossRefGoogle Scholar
  11. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002). arXiv:astro-ph/9908168 ADSCrossRefGoogle Scholar
  12. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003). arXiv:astro-ph/0302506 ADSCrossRefGoogle Scholar
  13. Capozziello, S., D’Agostino, R., Luongo, O.: Phys. Dark Universe 20, 1 (2018). arXiv:1712.04317 [gr-qc] ADSCrossRefGoogle Scholar
  14. Chavanis, P.H.: Eur. Phys. J. Plus 130, 130 (2015) CrossRefGoogle Scholar
  15. Chavanis, P.H.: Phys. Lett. B 758, 59 (2016) ADSCrossRefGoogle Scholar
  16. Chimento, L.P., Lazkoz, R.: Mod. Phys. Lett. A 19, 2479 (2004). arXiv:gr-qc/0405020 ADSCrossRefGoogle Scholar
  17. de la Cruz-Dombriz, A., Saez-Gomez, D.: Entropy 14, 1717 (2012). arXiv:1207.2663 [gr-qc] ADSMathSciNetCrossRefGoogle Scholar
  18. de la Cruz-Dombriz, A., Farrugia, G., Said, J.L., Saez-Gomez, D.: Class. Quantum Gravity 34, 235011 (2017) ADSCrossRefGoogle Scholar
  19. de la Cruz-Dombriz, A., Farrugia, G., Said, J.L., Saez-Chillon Gomez, D.: Phys. Rev. D 97, 104040 (2018). arXiv:1801.10085 [gr-qc] ADSMathSciNetCrossRefGoogle Scholar
  20. Frampton, P.H., Takahashi, T.: Phys. Lett. B 557, 135 (2003). arXiv:astro-ph/0211544 ADSCrossRefGoogle Scholar
  21. Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: Phys. Rev. D 84, 063003 (2011). arXiv:1106.4996v1 [astro-ph.CO] ADSCrossRefGoogle Scholar
  22. Granda, L.N., Loaiza, E.: Int. J. Mod. Phys. D 21, 1250002 (2012). arXiv:1111.2454 [hep-th] ADSCrossRefGoogle Scholar
  23. Hicken, M., et al.: Astrophys. J. 700, 1097 (2009). arXiv:0901.4804 [astro-ph.CO] ADSCrossRefGoogle Scholar
  24. Jenkovszky, L.L., Zhdanov, V.I., Stukalo, E.J.: Phys. Rev. D 90, 023529 (2014). arXiv:1402.1749 [astro-ph.CO] ADSCrossRefGoogle Scholar
  25. Komatsu, E., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 180, 330 (2009). arXiv:0803.0547 [astro-ph] ADSCrossRefGoogle Scholar
  26. Komatsu, E., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO] ADSCrossRefGoogle Scholar
  27. Kowalski, M., et al.: Astrophys. J. 686, 749 (2008). arXiv:0804.4142 ADSCrossRefGoogle Scholar
  28. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 103522 (2004). arXiv:hep-th/0408170 ADSCrossRefGoogle Scholar
  29. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 72, 023003 (2005). arXiv:hep-th/0505215 ADSCrossRefGoogle Scholar
  30. Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Phys. Rev. D 71, 063004 (2005). arXiv:hep-th/0501025 ADSCrossRefGoogle Scholar
  31. Odintsov, S.D., Oikonomou, V.K., Timoshkin, A.V., Saridakis, E.N., Myrzakulov, R.: Ann. Phys. 398, 238 (2018). arXiv:1810.01276 [gr-qc] ADSCrossRefGoogle Scholar
  32. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010). arXiv:0907.1660 [astro-ph.CO] ADSCrossRefGoogle Scholar
  33. Perlmutter, S., et al.: Nature 391, 51 (1998) ADSCrossRefGoogle Scholar
  34. Riess, A.G., et al.: Astron. J. 116, 1009 (1998a) ADSCrossRefGoogle Scholar
  35. Riess, A.G., et al.: Astron. J. 117, 707 (1998b) ADSCrossRefGoogle Scholar
  36. Saez-Gomez, D.: Class. Quantum Gravity 30, 095008 (2013). arXiv:1207.5472 [gr-qc] ADSMathSciNetCrossRefGoogle Scholar
  37. Stefancic, H.: Phys. Rev. D 71, 084024 (2005). astro-ph/0411630 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de FisicaUniversidad del ValleCaliColombia

Personalised recommendations