MERcury Gravity REcovery and Analysis System (MERGREAS) and its performances from simulated four-way Doppler measurements

  • Jianguo YanEmail author
  • Shanhong Liu
  • Xuan Yang
  • Chi Xiao
  • Mao YeEmail author
  • Weitong Jin
  • Fei Li
  • Jean-Pierre Barriot
Original Article


The exploration of the planet Mercury requires software applications that can execute Precise Orbit Determination (POD) and estimate dynamic parameter solutions. In this paper, we present MERcury Gravity REcovery and Analysis System (MERGREAS), a new software product that is designed to support the future Chinese Mercury explorations. To validate the software we crosschecked the MERGREAS functionalities against the GEODYN-II. Simulated orbit determination experiments show that the differences between MERGREAS and GEODYN-II in the \(X\), \(Y\), and \(Z\) directions were 0.2, 0.7, and 0.5 m respectively with the arc length of 24 h. The integration interval for both software platforms was 10s. The MERGREAS software can utilize four-way Doppler measurements for spacecraft orbit determination as well as precise positioning of a Mercury lander. In simulations, we show that when the four-way Doppler data are included, the accuracy in Mercury spacecraft orbit determination can reach the centimeter level and the lander positioning accuracy can be refined to decimeter level. Furthermore, when we considered the influence of the Mercury gravity errors, measurement bias, and Mercury orientation model errors in POD with MERGREAS, the errors in the orbiter position ranged as high as 300 meters with a lander position deviation of about 10 meters. The Mercury gravity field solution was improved and the accuracy of the Mercury tidal Love number \(k_{2}\) increased by an order of magnitude when simulated four-way Doppler data were added. The more precise \(k_{2}\) value enhanced the accuracy of the constraints used in internal physical parameters estimation for Mercury. These results provide a reference for future Chinese Mercury exploration missions.


Mercury Two-way Doppler Four-way Doppler Precise orbit determination Mercury tidal Love number 



We appreciate Prof. Shuanggen Jin from Shanghai Astronomical Observatory to provide advice in this research. We thank the Mr. Stephen C. McClure, a native English speaker and researcher, and Dr. Yiqun Dai from Wuhan University to help polish this paper. The work is supported by National Scientific Foundation of China (U1831132, 41874010, 41804025) and Innovation Group of Natural Fund of Hubei Province (2018CFA087). This work is also supported by the Open Funding of Astro Dynamic Laboratory (No. 2016ADL-DW0103) and the Open Funding of Macau University of Science and Technology (FDCT 119/2017/A3). JPB is funded by a DAR grant in planetology from the French Space Agency (CNES). The GEODYN-II is authorized by GSFC/NASA and we run it in workstation in Shanghai Astronomical Observatory. The numerical calculations of MERGREAS have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Supplementary material

10509_2019_3548_MOESM1_ESM.docx (46 kb)
(DOCX 46 kB)


  1. Acton, C.H.: Planet. Space Sci. 44(1), 65–70 (1996) ADSCrossRefGoogle Scholar
  2. Acton, C., Bachman, N., Semenov, B., Wright, E.: Planet. Space Sci. 150, 9 (2017) ADSCrossRefGoogle Scholar
  3. Bertone, S., Poncin-Lafitte, C.L., Rosenblatt, P., Lainey, V., Marty, J.C., Angonin, M.C.: Adv. Space Res. 61(1), 89 (2017) ADSCrossRefGoogle Scholar
  4. Böhm, J., Niell, A., Tregoning, P., Schuh, H.: Geophys. Res. Lett. 33(7) L07304 (2006) ADSGoogle Scholar
  5. Cicalò, S., Schettino, G., Di, R.S., Alessi, E.M., Tommei, G., Milani, A.: Mon. Not. R. Astron. Soc. 457(2), 1507 (2016) ADSCrossRefGoogle Scholar
  6. Correia, A.C.M., Laskar, J.: Nature 429, 848 (2004) ADSCrossRefGoogle Scholar
  7. Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., Elgered, G.: Radio Sci. 20(6), 1593 (1985) ADSCrossRefGoogle Scholar
  8. Dumberry, M., Rivoldini, A.: Icarus 248, 254 (2015) ADSCrossRefGoogle Scholar
  9. Ernst, C.M., Murchie, S.L., Barnouin, O.S., Robinson, M.S., Denevi, B.W., Biewett, D.T., Head, J.W., Izenberg, N.R., Solomon, S.C., Roberts, J.H.: Icarus 209(1), 210 (2010) ADSCrossRefGoogle Scholar
  10. ESA Media Relations Office (2018).
  11. Evans, S., Taber, W., Drain, T., Smith, J., Wu, H.C., Guevara, M., Sunseri, R., Evans, J.: In: 6th International Conference on Astrodynamics Tools and Techniques, Darmstadtium, Germany (2016) Google Scholar
  12. Genova, A., Iess, L., Marabucci, M.: Planet. Space Sci. 81, 55 (2013) ADSCrossRefGoogle Scholar
  13. Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T.: Icarus 272, 228 (2016) ADSCrossRefGoogle Scholar
  14. Goossens, S., Matsumoto, K., Rowlands, D.D., Lemoine, F.G., Noda, H., Araki, H.: J. Geod. 85(8), 487 (2011) ADSCrossRefGoogle Scholar
  15. Healy, L.M., Berry, M.M.: A variable-step double-integration multi-step integrator. Dissertation Abstracts International 65-02, 0857 (2004) Google Scholar
  16. Iwata, T., Takahashi, M., Namiki, N., Hanada, H., Kawano, N., Heki, K.: J. Geod. Soc. Jpn. 47(1), 558 (2001) Google Scholar
  17. Johnson, C.L., Hauck, S.A.: J. Geophys. Res. 121(11), 2349 (2016) CrossRefGoogle Scholar
  18. Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellite to Geodesy. Blaisdell, Waltham (1966) zbMATHGoogle Scholar
  19. Khan, A., Liebske, C., Rozel, A., Rivoldini, A., Nimmo, F., Connolly, J.A.D., Plesa, A.-C., Giardini, D.: J. Geophys. Res., Planets 123, 575–611 (2017) ADSCrossRefGoogle Scholar
  20. Lemoine, F.G., Goossens, S., Sabaka, T.J., Nicholas, J.B., Erwan, M., Rowlands, D.D., Loomis, B.D., Chinn, D.S., Caprette, D.S., Neumann, G.A., Smith, D.E., Zuber, M.T.: J. Geophys. Res., Planets 118(8), 1676 (2013) ADSCrossRefGoogle Scholar
  21. Li, F., Ye, M., Yan, J., Hao, W., Barriot, J.P.: Adv. Space Res. 57(11), 2376 (2016) ADSCrossRefGoogle Scholar
  22. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., Smith, D.E., Solomon, S.C.: J. Geophys. Res., Planets 119(12), 2417–2436 (2014) ADSCrossRefGoogle Scholar
  23. Montenbruck, O., Gill, E.: Appl. Mech. Rev. 55(2), 77 (2002) CrossRefGoogle Scholar
  24. Moyer, T.D.: Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation, Monograph 2. Deep Space Communications and Navigations Series. NASA/JPL, Oak Grove (2001) Google Scholar
  25. Moyer, T.D.: Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation (2005) Google Scholar
  26. Namiki, N., Iwata, T., Matsumoto, K., Hanada, H., Noda, H., Goossens, S., Ogawa, M., Kawano, N., Asari, K., Tsuruta, S., Ishihara, Y., Liu, Q., Kikuchi, F., Ishikawa, T., Sasaki, S., Aoshima, C., Kurosawa, K., Sugita, S., Takano, T.: Science 323(5916), 900 (2009) ADSCrossRefGoogle Scholar
  27. Padovan, S., Margot, J.L., Hauck, S.A. II, Moore, W.B., Solomon, S.C.: J. Geophys. Res., Planets 119(4), 850 (2014) ADSCrossRefGoogle Scholar
  28. Pavlis, D.E., Poulose, S.G., Rowton, S.C., McCarthy, J.J., Luthcke, S.B.: GEODYN operations manuals. Raytheon ITSS contractor report (2000) Google Scholar
  29. Petit, G., Luzum, B.: In: IERS Convention 2010, IERS Technical Note 36. Verlag den Bundesamtes für Kartographie und Geodäsie, Frankfurt (2010) Google Scholar
  30. Potter, A., Morgan, T.: Science 229(4714), 651 (1985) ADSCrossRefGoogle Scholar
  31. Rivoldini, A., Hoolst, T., Verhoeven, O.: Icarus 201(1), 12 (2009) ADSCrossRefGoogle Scholar
  32. Rivoldini, A., Van Hoolst, T.: Earth Planet. Sci. Lett. 377, 62 (2013) ADSCrossRefGoogle Scholar
  33. Saastamoinen, J.: Use Artif. Sat. Geo. 15,247 (1972) Google Scholar
  34. Schettino, G., Tommei, G.: Universe 2(3), 21 (2016) ADSCrossRefGoogle Scholar
  35. Shapiro, I.I.: Phys. Rev. Lett. 13(26), 789 (1964) ADSMathSciNetCrossRefGoogle Scholar
  36. Smith, D.E., Zuber, M.T., Phillips, R.J., Solomon, S.C., Hauck, S.A. II, Lemoine, F.G., Mazarico, E., Neumann, G.A., Peale, S.J., Margot, J.L., Johnson, C.L., Torrence, M.H., Perry, M.E., Rowlands, D.D., Goossens, S., Head, J.W., Taylor, A.H.: Science 336(6078), 214 (2012) ADSCrossRefGoogle Scholar
  37. Stark, A., Oberst, J., Preusker, F., Gwinner, K., Peale, S.J., Margot, J.L.: Planet. Space Sci. 117(1), 64 (2015) ADSCrossRefGoogle Scholar
  38. Takeuchi, H., Saito, M.: Methods Comput. Phys. 11, 217–295 (1972) Google Scholar
  39. Tapley, B., Schutz, B., Born, G.H.: Radiometric Tracking Techniques for Deep-Space Navigation. Elsevier, Boston (2004) Google Scholar
  40. The state council information office of China (2016).
  41. Thornton, C.L., Border, J.S.: Radiometric Tracking Techniques for Deep-Space Navigation. Wiley, New York (2003) CrossRefGoogle Scholar
  42. Tommei, G., Milani, A., Vokrouhlický, D.: Celest. Mech. Dyn. Astron. 107(1), 285–298 (2010) ADSCrossRefGoogle Scholar
  43. Van Hoolst, T., Jacobs, C.: J. Geophys. Res., Planets 108(E11) 5121 (2003) ADSCrossRefGoogle Scholar
  44. Van Hoolst, T., Sohl, F., Holin, I., Verhoeven, O., Dehant, V., Spohn, T.: Space Sci. Rev. 132, 203 (2007) ADSCrossRefGoogle Scholar
  45. Verma, A.K., Margot, J.L.: J. Geophys. Res., Planets 121(9) 1627 (2016) ADSCrossRefGoogle Scholar
  46. Wieczorek, M.A., Correia, A.C.M., Feuvre, M.L., Laskar, J., Rambaux, N.: Nat. Geosci. 5(1), 18 (2011) ADSCrossRefGoogle Scholar
  47. Williams, J.G., Boggs, D.H., Folkner, W.M.: IOM 335-JW, DB, WF-20130822-106, July 22, Jet Propul. Lab., Pasadena, USA (2013) Google Scholar
  48. Yan, J.G., Yang, X., Ye, M., Li, F., Jin, W.T., Barriot, J.P.: Astrophys. Space Sci. 362(7), 123 (2017) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jianguo Yan
    • 1
    • 2
    Email author
  • Shanhong Liu
    • 1
  • Xuan Yang
    • 1
  • Chi Xiao
    • 3
  • Mao Ye
    • 1
    Email author
  • Weitong Jin
    • 1
  • Fei Li
    • 1
  • Jean-Pierre Barriot
    • 1
    • 4
  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Astronautic DynamicsXi’an Satellite Control CenterXi’anChina
  3. 3.Chinese Antarctic Center of Surveying and MappingWuhan UniversityWuhanChina
  4. 4.Observatoire géodésique de TahitiFaa’aFrench Polynesia

Personalised recommendations