Advertisement

High frequency spectral features of galactic cosmic rays at different rigidities during the ascending and maximum phases of the solar cycle 24

  • A. I. Saad FaridEmail author
Letter to the Editor
  • 34 Downloads

Abstract

Galactic cosmic rays (GCR) intensity during the current solar cycle (SC) 24 exhibit unusual modulation characteristics. In this study, the temporal evolution of the daily GCRs recorded over a wide range of particle rigidities by seven neutron monitor stations located at Thule, Nain, Sanae, Newark, Alma-Ata, Mexico and Athens is investigated. The datasets span the time interval from Jan 2009 to Dec 2015 which cover the ascending and the maximum phases of the present SC 24. The Morlet wavelet analysis is employed to examine the periodicities in the range 8–512 day. At high frequency range, the prominent period of band 20–40 day related to the synodic rotation of the Sun along with its harmonics in the band 8–16 day were detected. In the mid-term range, the well-known ‘Rieger-type periodicity’ of 120–170 day was identified specially during the maximum epoch, i.e. 2012. Another period in the range 250–460 day is significantly appears during nearly the entire epoch, and at almost all stations. It may be considered as annual and near-annual period where it is supposed to be related—during these phases—to the solar magnetic field characteristics, and not to the earth’s heliolatitude variations. Possible explanation of the observed periods are discussed in the light of existing models and earlier findings.

Keywords

Galactic cosmic ray modulation Wavelet analysis Periodicities 

Notes

Acknowledgements

The author thanks the Athens Neutron Monitor Station (A.NE.MO.S) group and the principal investigators of the all neutron monitors used in this work for kindly providing their data on line. He also thanks Y. Liu and his colleagues for making the Rectified Wavelet Power Spectrum code available (http://ocgweb.marine.usf.edu/~liu/wavelet.html). The author extends his appreciation to the anonymous referee for her/his useful comments and suggestions.

References

  1. Aharonian, F., Bykov, A., Parizot, E., Ptuskin, V., Watson, A.: Cosmic rays in galactic and extragalactic magnetic fields. Space Sci. Rev. 166, 97 (2012) ADSCrossRefGoogle Scholar
  2. Ahluwalia, H.S.: Sunspot activity and cosmic ray modulation at 1 a.u. for 1900–2013. Adv. Space Res. 54, 1704 (2014) ADSCrossRefGoogle Scholar
  3. Ahluwalia, H.S., Ygbuhay, R.C.: The onset of sunspot cycle 24 and galactic cosmic ray modulation. Adv. Space Res. 48, 61 (2011) ADSCrossRefGoogle Scholar
  4. Ahluwalia, H.S., Ygbuhay, R.C.: Cosmic ray 11-year modulation for sunspot cycle 24. Sol. Phys. 290, 635 (2015) ADSCrossRefGoogle Scholar
  5. Attolini, M.R., Cecchini, S., Galli, M.: A search for cosmic-ray variations generated by pulsations of the heliosphere. Astrophys. Space Sci. 134, 103 (1987) ADSCrossRefGoogle Scholar
  6. Balabin, Y.V., Belov, A.V., Gushchina, R.T.: Annual variations of cosmic rays in the 24th solar cycle. Bull. Russ. Acad. Sci., Phys. 79(5), 622 (2015) CrossRefGoogle Scholar
  7. Belov, A.V., Gushchina, R.T., Yanke, V.G.: Contributions from changes in various solar indices in cycles 20–23 and 24 to the modulation of cosmic rays. Bull. Russ. Acad. Sci., Phys. 81(2), 146 (2017) CrossRefGoogle Scholar
  8. Blasi, P.: The origin of galactic cosmic rays. Astron. Astrophys. Rev. 21, 70 (2013) ADSCrossRefGoogle Scholar
  9. Caballero, R., Valdes-Galicia, J.F.: Statistical analysis of the fluctuations detected in high-altitude neutron monitor, solar and interplanetary parameters. Sol. Phys. 213, 413 (2003) ADSCrossRefGoogle Scholar
  10. Chowdhury, P., Kudela, K.: Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017. Astrophys. Space Sci. 363, 250 (2018) ADSCrossRefGoogle Scholar
  11. Chowdhury, P., Khan, M., Ray, P.C.: Evaluation of the intermediate-term periodicities in solar and cosmic ray activities during cycle 23. Astrophys. Space Sci. 326, 191 (2010) ADSCrossRefGoogle Scholar
  12. Chowdhury, P., Kudela, K., Moon, Y.-J.: A study of heliospheric modulation and periodicities of galactic cosmic rays during cycle 24. Sol. Phys. 291, 581 (2016) ADSCrossRefGoogle Scholar
  13. Dalla, S., Balogh, A., Heber, B., Lopate, C.: Further indications of a ∼140 day recurrence in energetic particle fluxes at 1 and 5 AU from the Sun. J. Geophys. Res. 106, 5721 (2001) ADSCrossRefGoogle Scholar
  14. El-Borie, M.A., Al-Thoyaib, S.S.: Power spectrum of cosmic-ray fluctuations during consecutive solar minimum and maximum periods. Sol. Phys. 209, 397 (2002) ADSCrossRefGoogle Scholar
  15. El-Borie, M.A., Aly, N.A., El-Taher, A.: Mid-term periodicities of cosmic ray intensities. J. Adv. Res. 2, 137 (2011) CrossRefGoogle Scholar
  16. Gushchina, R.T., Belov, A.V., Eroshenko, E.A., Obridko, V.N., Paouris, E., Shelting, B.D.: Cosmic ray modulation during the solar activity growth phase of cycle 24. Geomagn. Aeron. 54(4), 430 (2014) ADSCrossRefGoogle Scholar
  17. Heber, B., Fichtner, H., Scherer, K.: Solar and heliospheric modulation of galactic cosmic rays. Space Sci. Rev. 125, 81 (2006) ADSCrossRefGoogle Scholar
  18. Hill, M.E., Hamilton, D.C., Krimigis, S.M.: Periodicity of 151 days in outer heliospheric anomalous cosmic ray fluxes. J. Geophys. Res. 106, 8315 (2001) ADSCrossRefGoogle Scholar
  19. Jokipii, J.R., Kota, J.: Three-dimensional cosmic ray simulations: heliographic latitude and current sheet tilt. Space Sci. Rev. 72, 379 (1995) ADSCrossRefGoogle Scholar
  20. Joshi, A.: Cosmic ray periodicity at 170 day. Sol. Phys. 185, 397 (1999) ADSCrossRefGoogle Scholar
  21. Kalinin, M.S., Bazilevskaya, G.A., Krainev, M.B., Svirzhevskaya, A.K., Svirzhevsky, N.S., Starodubtsev, S.A.: Modulation of galactic cosmic rays in solar cycles 22–24: analysis and physical interpretation. Geomagn. Aeron. 57(5), 549 (2017) ADSCrossRefGoogle Scholar
  22. Krainev, M., Bazilevskaya, G., Kalinin, M., Svirzhevskaya, A., Svirzhevsky, N.: GCR intensity during the sunspot maximum phase and the inversion of the heliospheric magnetic field. In: The 34th International Cosmic Ray Conference,The Hague, The Netherlands (2015). arXiv:1509.00613v1 [astro-ph.SR], 2 Sep 2015 Google Scholar
  23. Kudela, K., Sabbah, I.: Quasi-periodic variations of low energy cosmic rays. Sci. China, Technol. Sci. 59(1), 1 (2016) Google Scholar
  24. Kudela, K., Rybak, J., Antalov, A., Storini, M.: Time evolution of low frequency periodicities in cosmic ray intensity. Sol. Phys. 205, 165 (2002) ADSCrossRefGoogle Scholar
  25. Liu, Y., Liang, X.S., Weisberg, R.H.: Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 24(12), 2093 (2007) ADSCrossRefGoogle Scholar
  26. Lou, Y.-Q.: Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540, 1102 (2000) ADSCrossRefGoogle Scholar
  27. Mavromichalaki, H., Preka-Papademab, P., Petropoulosc, B., Vassilaki, A., Tsagouri, I.: Time evolution of cosmic-ray intensity and solar flare index at the maximum phase of cycles 21 and 22. J. Atmos. Sol.-Terr. Phys. 65, 1021 (2003) ADSCrossRefGoogle Scholar
  28. McIntosh, S.W., Leamon, R.J., Krista, L.D., et al.: The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491 (2015) CrossRefGoogle Scholar
  29. Olemskoy, S.V., Mordvino, A.V.: Effect of active longitudes in cosmic ray flux modulation. Geomagn. Aeron. 49, 179 (2009) ADSCrossRefGoogle Scholar
  30. Prabhakaran Nayar, S.R., Nair, V.S., Radhika, V.N., Revathy, K.: Short-period features of the interplanetary plasma and their evolution. Sol. Phys. 201, 405 (2001) ADSCrossRefGoogle Scholar
  31. Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: A 154-day periodicity in the occurrence of hard solar flares. Nature 312, 623 (1984) ADSCrossRefGoogle Scholar
  32. Sabbah, I.: Twenty-seven-day variation of galactic cosmic rays. Sol. Phys. 245(1), 207 (2007) ADSMathSciNetCrossRefGoogle Scholar
  33. Sabbah, I., Kudela, K.: Third harmonic of the 27 day periodicity of galactic cosmic rays: coupling with interplanetary parameters. J. Geophys. Res. 116, A04103 (2011) ADSCrossRefGoogle Scholar
  34. Silva, H.G., Lopes, I.: Rieger-type periodicities on the Sun and the Earth during solar cycles 21 and 22. Astrophys. Space Sci. 362, 44 (2017) ADSCrossRefGoogle Scholar
  35. Singh, Y.P., Gautama, S., Badruddin: Temporal variations of short- and mid-term periodicities in solar wind parameters and cosmic ray intensity. J. Atmos. Sol.-Terr. Phys. 89, 48 (2012) ADSCrossRefGoogle Scholar
  36. Tsichla, M., Gerontidou, M., Mavromichalaki, H.: Spectral analysis of solar and geomagnetic parameters in relation to cosmic-ray intensity for the time period 1965–2018. Sol. Phys. 294, 15 (2019) ADSCrossRefGoogle Scholar
  37. Valdes-Galicia, J.F., Lara, A., Mendoza, B.: The solar magnetic flux mid-term periodicities and the solar dynamo. J. Atmos. Sol.-Terr. Phys. 67, 1697 (2005) ADSCrossRefGoogle Scholar
  38. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. 724, L95 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Physics and Chemistry Department, Faculty of EducationAlexandria UniversityAlexandriaEgypt

Personalised recommendations