Advertisement

Galaxy morphology classification with deep convolutional neural networks

  • Xiao-Pan Zhu
  • Jia-Ming DaiEmail author
  • Chun-Jiang Bian
  • Yu Chen
  • Shi Chen
  • Chen Hu
Original Article
  • 35 Downloads

Abstract

We propose a variant of residual networks (ResNets) for galaxy morphology classification. The variant, together with other popular convolutional neural networks (CNNs), is applied to a sample of 28790 galaxy images from the Galaxy Zoo 2 dataset, to classify galaxies into five classes, i.e., completely round smooth, in-between smooth (between completely round and cigar-shaped), cigar-shaped smooth, edge-on and spiral. Various metrics, such as accuracy, precision, recall, F1 value and AUC, show that the proposed network achieves state-of-the-art classification performance among other networks, namely, Dieleman, AlexNet, VGG, Inception and ResNets. The overall classification accuracy of our network on the testing set is 95.2083% and the accuracy of each type is given as follows: completely round, 96.6785%; in-between, 94.4238%; cigar-shaped, 58.6207%; edge-on, 94.3590% and spiral, 97.6953%. Our model algorithm can be applied to large-scale galaxy classification in forthcoming surveys, such as the Large Synoptic Survey Telescope (LSST) survey.

Keywords

Galaxy morphology classification Deep learning Convolutional neural networks 

Notes

Acknowledgements

We would like to thank galaxy challenge, Galaxy Zoo, SDSS and Kaggle platform for sharing data. We acknowledge the financial support from the National Earth System Science Data Sharing Infrastructure (http://spacescience.geodata.cn). We are supported by CAS e-Science Funds (Grant XXH135 03-04).

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: arXiv:1603.04467 (2016)
  2. Aniyan, A., Thorat, K.: Astrophys. J. Suppl. Ser. 230(2), 20 (2017) ADSCrossRefGoogle Scholar
  3. Bamford, S.P., Nichol, R.C., Baldry, I.K., Land, K., Lintott, C.J., Schawinski, K., Slosar, A., Szalay, A.S., Thomas, D., Torki, M., et al.: Mon. Not. R. Astron. Soc. 393(4), 1324 (2009) ADSCrossRefGoogle Scholar
  4. Banerji, M., Lahav, O., Lintott, C.J., Abdalla, F.B., Schawinski, K., Bamford, S.P., Andreescu, D., Murray, P., Raddick, M.J., Slosar, A., et al.: Mon. Not. R. Astron. Soc. 406(1), 342 (2010) ADSCrossRefGoogle Scholar
  5. Bazell, D., Aha, D.W.: Astrophys. J. 548(1), 219 (2001) ADSCrossRefGoogle Scholar
  6. Bengio, Y., Courville, A., Vincent, P.: IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798 (2013) CrossRefGoogle Scholar
  7. Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., Fraternali, P., Quarteroni, S.: An Introduction to Information Retrieval, p. 3. Springer, Berlin (2013) zbMATHGoogle Scholar
  8. Cun, Y.L., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard, R.E., Hubbard, W.: IEEE Commun. Mag. 27(11), 41 (1989) CrossRefGoogle Scholar
  9. De La Calleja, J., Fuentes, O.: Mon. Not. R. Astron. Soc. 349(1), 87 (2004) ADSCrossRefGoogle Scholar
  10. Dieleman, S., Willett, K.W., Dambre, J.: Mon. Not. R. Astron. Soc. 450(2), 1441 (2015) ADSCrossRefGoogle Scholar
  11. Ferrari, F., de Carvalho, R.R., Trevisan, M.: Astrophys. J. 814(1), 55 (2015) ADSCrossRefGoogle Scholar
  12. Gauci, A., Adami, K.Z., Abela, J.: arXiv:1005.0390 (2010)
  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, (2016) zbMATHGoogle Scholar
  14. He, K., Zhang, X., Ren, S., Sun, J.: In: Proceedings of the IEEE International Conference on Computer Vision, p. 1026 (2015) Google Scholar
  15. He, K., Zhang, X., Ren, S., Sun, J.: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 770 (2016a) Google Scholar
  16. He, K., Zhang, X., Ren, S., Sun, J.: In: European Conference on Computer Vision, p. 630. Springer, Berlin (2016b) Google Scholar
  17. Hoyle, B.: Astron. Comput. 16, 34 (2016) ADSCrossRefGoogle Scholar
  18. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: arXiv:1608.06993 (2016)
  19. Hubble, E.P.: Astrophys. J. 64 (1926) Google Scholar
  20. Huertas-Company, M., Aguerri, J., Bernardi, M., Mei, S., Sánchez Almeida, J.: Astron. Astrophys. 525, 75 (2011) CrossRefGoogle Scholar
  21. Huertas-Company, M., Gravet, R., Cabrera-Vives, G., Pérez-González, P..G.., Kartaltepe, J..S., Barro, G., Bernardi, M., Mei, S., Shankar, F., Dimauro, P., Bell, E.F., Kocevski, D., Koo, D.C., Faber, S.M., Mcintosh, D.H.: Astrophys. J. Suppl. Ser. 221, 8 (2015).  https://doi.org/10.1088/0067-0049/221/1/8. arXiv:1509.05429 ADSCrossRefGoogle Scholar
  22. Ioffe, S., Szegedy, C.: In: International Conference on Machine Learning, p. 448 (2015) Google Scholar
  23. Kim, E.J., Brunner, R.J.: Mon. Not. R. Astron. Soc., 2672 (2016) Google Scholar
  24. Kohonen, T.: Neural Netw. 1(1), 3 (1988) CrossRefGoogle Scholar
  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: In: Advances in Neural Information Processing Systems, p. 1097 (2012) Google Scholar
  26. Land, K., Slosar, A., Lintott, C., Andreescu, D., Bamford, S., Murray, P., Nichol, R., Raddick, M.J., Schawinski, K., Szalay, A., et al.: Mon. Not. R. Astron. Soc. 388(4), 1686 (2008) ADSCrossRefGoogle Scholar
  27. LeCun, Y., Bengio, Y., Hinton, G.: Nature 521(7553), 436 (2015) ADSCrossRefGoogle Scholar
  28. Lintott, C.J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M.J., Nichol, R.C., Szalay, A., Andreescu, D., et al.: Mon. Not. R. Astron. Soc. 389(3), 1179 (2008) ADSCrossRefGoogle Scholar
  29. Lintott, C., Schawinski, K., Bamford, S., Slosar, A., Land, K., Thomas, D., Edmondson, E., Masters, K., Nichol, R.C., Raddick, M.J., et al.: Mon. Not. R. Astron. Soc. 410(1), 166 (2010) ADSCrossRefGoogle Scholar
  30. Naim, A., Lahav, O., Sodre, L., Storrie-Lombardi, M.: Mon. Not. R. Astron. Soc. 275(3), 567 (1995) ADSCrossRefGoogle Scholar
  31. Nair, V., Hinton, G.E.: In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), p. 807 (2010) Google Scholar
  32. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: Pattern Recognit. Lett. 29(11), 1684 (2008) CrossRefGoogle Scholar
  33. Owens, E., Griffiths, R., Ratnatunga, K.: Mon. Not. R. Astron. Soc. 281(1), 153 (1996) ADSCrossRefGoogle Scholar
  34. Pedregosa, F., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: J. Mach. Learn. Res. 12(10), 2825 (2012) Google Scholar
  35. Petrillo, C., Tortora, C., Chatterjee, S., Vernardos, G., Koopmans, L., Verdoes Kleijn, G., Napolitano, N., Covone, G., Schneider, P., Grado, A., et al.: Mon. Not. R. Astron. Soc. 472(1), 1129 (2017) ADSCrossRefGoogle Scholar
  36. Polsterer, K.L., Gieseke, F., Kramer, O.: Astron. Data Anal. Softw. Syst. 461, 561 (2012) ADSGoogle Scholar
  37. Sandage, A.: Annu. Rev. Astron. Astrophys. 43, 581 (2005) ADSCrossRefGoogle Scholar
  38. Schawinski, K., Lintott, C., Thomas, D., Sarzi, M., Andreescu, D., Bamford, S.P., Kaviraj, S., Khochfar, S., Land, K., Murray, P., et al.: Mon. Not. R. Astron. Soc. 396(2), 818 (2009) ADSCrossRefGoogle Scholar
  39. Simmons, B.D., Lintott, C., Willett, K.W., Masters, K.L., Kartaltepe, J.S., Häußler, B., Kaviraj, S., Krawczyk, C., Kruk, S., McIntosh, D.H., et al.: Mon. Not. R. Astron. Soc., 2587 (2016) Google Scholar
  40. Simonyan, K., Zisserman, A.: arXiv:1409.1556 (2014)
  41. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: J. Mach. Learn. Res. 15(1), 1929 (2014) MathSciNetGoogle Scholar
  42. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 1 (2015) Google Scholar
  43. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 2818 (2016) Google Scholar
  44. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: In: AAAI, p. 4278 (2017) Google Scholar
  45. Van Walt, S.D., Schönberger, J.L., Nuneziglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: Peerj 2(2), 453 (2014) CrossRefGoogle Scholar
  46. Willett, K.W., Lintott, C.J., Bamford, S.P., Masters, K.L., Simmons, B.D., Casteels, K.R., Edmondson, E.M., Fortson, L.F., Kaviraj, S., Keel, W.C., et al.: Mon. Not. R. Astron. Soc., 1458 (2013) Google Scholar
  47. Willett, K.W., Schawinski, K., Simmons, B.D., Masters, K.L., Skibba, R.A., Kaviraj, S., Melvin, T., Wong, O.I., Nichol, R.C., Cheung, E., et al.: Mon. Not. R. Astron. Soc. 449(1), 820 (2015) ADSCrossRefGoogle Scholar
  48. Willett, K.W., Galloway, M.A., Bamford, S.P., Lintott, C.J., Masters, K.L., Scarlata, C., Simmons, B.D., Beck, M., Cardamone, C.N., Cheung, E., et al.: Mon. Not. R. Astron. Soc. 464(4), 4176 (2016) ADSCrossRefGoogle Scholar
  49. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: arXiv:1506.06579 (2015)
  50. Zagoruyko, S., Komodakis, N.: arXiv:1605.07146 (2016)
  51. Zeiler, M.D., Fergus, R.: In: European Conference on Computer Vision, p. 818. Springer, Berlin (2014) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Space Science CenterChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations