Advertisement

Near-annual variation of the magnetic Sun

  • V. A. KotovEmail author
Original Article
  • 29 Downloads

Abstract

Over past 51 years (1968–2018) the general magnetic field of the Sun was measured nearly each day by the Crimean Astrophysical Observatory, the Wilcox Solar Observatory and five others. It is shown that the annual variation of this field (longitudinal component), thought to be caused by the inclination of the Sun’s axis to ecliptic, is splitted into two components with periods 0.954(3) years and 1.034(4) years (with mean amplitudes \(\approx 0.044\) G). But while the first one agrees well with the expected period 0.957(4) years (caused by the 11-year polar field reversals and coupled to the yearly projection effect), the second one is shifted relative to its theoretical value, 1.047(4) years, by \(\Delta = 0.013(5)\) years (99% confidence). The beat period of the two observed components, 12.3(7) years, agrees well with the Jovian period 11.9 years, being close also to the length of the 11-year cycle. Since the modern astronomy rejects a planetary influence on the Sun, the origin of both the 1.034-year periodicity and the shift \(\Delta \) remains to be mysterious.

Keywords

The Sun Photosphere Magnetic field 11-year cycle Solar system 

Notes

Acknowledgements

I express deep gratitude to F.M. Sanchez for exciting discussions on the Sun and the solar system, and thank also V.I. Haneychuk and other observers for their GMF data and the reviewer for useful comments.

References

  1. Bell, J.S.: Physics 1, 195 (1964) CrossRefGoogle Scholar
  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature 390, 575 (1997) ADSCrossRefGoogle Scholar
  3. Chaplin, W.J., Dumbill, A.M., Elsworth, Y., et al.: Mon. Not. R. Astron. Soc. 343, 813 (2003) ADSCrossRefGoogle Scholar
  4. Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., et al.: Science 272, 1286 (1996).  https://doi.org/10.1126/science.272.5266.1286 ADSCrossRefGoogle Scholar
  5. Demidov, M.L., Zhigalov, V.V., Peshcherov, V.S., Grigoryev, V.M.: Sol. Phys. 209, 217 (2002) ADSCrossRefGoogle Scholar
  6. Fossat, E., Boumier, P., Corbard, T., et al.: Astron. Astrophys. 604(A40), 1 (2017).  https://doi.org/10.1051/0004-6361/201730460 CrossRefGoogle Scholar
  7. Howard, R.: Sol. Phys. 38, 283 (1974) ADSCrossRefGoogle Scholar
  8. Kotov, V.A.: Sol. Phys. 239, 461 (2006).  https://doi.org/10.1007/s11207-006-0146-x ADSCrossRefGoogle Scholar
  9. Kotov, V.A., Sanchez, F.M.: Astrophys. Space Sci. 362(6), 1 (2017).  https://doi.org/10.1007/s10509-016-2985-8 ADSCrossRefGoogle Scholar
  10. Kotov, V.A., Stepanyan, N.N.: Izv. Krym. Astrofiz. Obs. 62, 117 (1980) ADSGoogle Scholar
  11. Roxburgh, I.W.: Sol. Phys. 100, 21 (1985) ADSCrossRefGoogle Scholar
  12. Scargle, J.D.: Astrophys. J. 263, 835 (1982) ADSCrossRefGoogle Scholar
  13. Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, T.L. Jr., Dittmer, P.H., Gustafson, E.K.: Sol. Phys. 54, 353 (1977) ADSCrossRefGoogle Scholar
  14. Severny, A.B.: Q. J. R. Astron. Soc. 12, 363 (1971) ADSGoogle Scholar
  15. Susskind, L., Friedman, A.: Quantum Mechanics: The Theoretical Minimum. Basic Books, London (2014) zbMATHGoogle Scholar
  16. Wilcox, J.M.: Comments Astrophys. Space Phys. 4, 141 (1972) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Crimean Astrophysical ObservatoryCrimeaRussian Federation

Personalised recommendations