Advertisement

Energy accumulation mechanism in pulsar magnetospheric plasma eigen-waves and formation of Giant Radio Pulses

  • G. Machabeli
  • N. ChkheidzeEmail author
  • I. Malov
Original Article
  • 46 Downloads

Abstract

In the present work we consider energy accumulation mechanism in relativistic electron-positron plasma in the magnetosphere of pulsars. In the light cylinder vicinity the waves propagating almost across the magnetic field lines are generated. Due to their propagation characteristics, these waves spend significantly long time in the resonance region and as a result accumulate the energy of resonant plasma particles. The accumulated energy is transmitted in the parallel direction of the magnetic field lines as soon as the non-linear plasma processes start to operate. As a result the direction of propagation of waves changes and the waves with accumulated energy can exit the pulsar magnetosphere. It is suggested that when the propagation angles of the mentioned waves becomes small with respect to the magnetic field lines, the waves can be observed as Giant Radio Pulses.

Keywords

Pulsars Plasmas Radiation mechanisms: non-thermal 

Notes

Acknowledgements

The work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [FR17_ 587].

References

  1. Argyle, E., Gower, F.R.: Astrophys. J. 175, L89 (1972) ADSCrossRefGoogle Scholar
  2. Arons, J., Barnard, J.J.: Astrophys. J. 302, 120 (1986) ADSCrossRefGoogle Scholar
  3. Chkheidze, N., Machabeli, G., Osmanov, Z.: Astrophys. J. 773, 142 (2013) CrossRefGoogle Scholar
  4. Goldreich, P., Julian, W.H.: Astrophys. J. 157, 869 (1969) ADSCrossRefGoogle Scholar
  5. Hankins, T.H., Kern, J.S., Weatherall, J.C., Eilek, J.A.: Nature 422, 141 (2003) ADSCrossRefGoogle Scholar
  6. Hankins, T.H., Eilek, J.A.: Astrophys. J. 670, 693 (2007) ADSCrossRefGoogle Scholar
  7. Istomin, Y.N.: In: Camilo, F., Gaensler, B.M. (eds.) IAU Symp. Vol. 218, Young Neutron Stars and Their Environments, p. 369. Astron. Soc. Pac., San Francisco (2004) Google Scholar
  8. Kazantsev, A.N., Potapov, V.A.: (2018). arXiv:1802.05864 [astro-ph.HE]
  9. Kazbegi, A., Machabeli, G., Melikidze, G.: Mon. Not. R. Astron. Soc. 253, 377 (1991a) ADSCrossRefGoogle Scholar
  10. Kazbegi, A., Machabeli, G., Melikidze, G.: Aust. J. Phys. 44, 573 (1991b) ADSCrossRefGoogle Scholar
  11. Kostyuk, S.V., Kondratiev, V.I., Kuzmin, A.D., et al.: Astron. Lett. 29, 387 (2003) ADSCrossRefGoogle Scholar
  12. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1971) zbMATHGoogle Scholar
  13. Lominadze, J.G., Machabeli, G.Z., Mikhailovskii, A.B.: Fiz. Plazmy 5, 1337 (1979) ADSGoogle Scholar
  14. Lominadze, D.G., Mikhailovskii, A.B.: Zh. Èksp. Teor. Fiz. 76, 959 (1979) ADSGoogle Scholar
  15. Lominadze, J.G., Machabeli, G.Z., Melikidze, G.I., Pataraya, A.D.: Sov. J. Plasma Phys. 12, 712 (1986) Google Scholar
  16. Lyutikov, M.: Mon. Not. R. Astron. Soc. 381, 1190 (2007) ADSCrossRefGoogle Scholar
  17. Lyutikov, M., Machabeli, G., Blandford, R.: Astrophys. J. 512, 805 (1999a) ADSCrossRefGoogle Scholar
  18. Lyutikov, M., Blandford, R.D., Machabeli, G.: Mon. Not. R. Astron. Soc. 305, 338 (1999b) ADSCrossRefGoogle Scholar
  19. Machabeli, G.Z., Usov, V.V.: Sov. Astron. Lett. 5, 238 (1979a) ADSGoogle Scholar
  20. Machabeli, G.Z., Usov, V.V.: Pis’ma Astron. Zh. 5, 445 (1979b) ADSGoogle Scholar
  21. Machabeli, G.Z., Vladimirov, S.V., Melrose, D.B.: Phys. Rev. E 59, 4552 (1999) ADSCrossRefGoogle Scholar
  22. Malov, I.F., Malov, O.I.: Astron. J. 83, 542 (2006) Google Scholar
  23. Michel, F.C.: Rev. Mod. Phys. 54, 1 (1982) ADSCrossRefGoogle Scholar
  24. Petrova, S.A.: Astron. Astrophys. 424, 227 (2004) ADSCrossRefGoogle Scholar
  25. Popov, M.V., Stappers, B.: Astron. Rep. 47, 660 (2003) ADSCrossRefGoogle Scholar
  26. Ruderman, M.A., Sutherland, P.G.: Astrophys. J. 196, 51 (1975) ADSCrossRefGoogle Scholar
  27. Shearer, A., Stappers, B., O’Connor, P., Golden, A., Strom, R., Redfern, M., Ryan, O.: Science 301, 493 (2003) ADSCrossRefGoogle Scholar
  28. Schwinger, J., Tsai, W-Y., Erber, T.: Ann. Phys. 96, 303 (1976) ADSCrossRefGoogle Scholar
  29. Staelin, D.H., Reifenstein, E.C.: Science 162, 1481 (1968) ADSCrossRefGoogle Scholar
  30. Sturrock, P.A.: Astrophys. J. 164, 529 (1971) ADSCrossRefGoogle Scholar
  31. Tademaru, E.: Astrophys. J. 183, 625 (1973) ADSCrossRefGoogle Scholar
  32. Volokitin, A.S., Krasnoselskikh, V.V., Machabeli, G.Z.: Fiz. Plazmy 11, 531 (1985) ADSGoogle Scholar
  33. Weatherall, J.C.: Astrophys. J. 559, 196 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Theoretical Astrophysics, ITPIlia State UniversityTbilisiGeorgia
  2. 2.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations